AER210: Vector Calc and Fluid Mechanics

QiLin Xue

Fall 2021

Contents

1 Double Integrals 2
2 Formal Definition of Double Integrals 7
3 Double Integrals in Polar Coordinates 9
4 Surface Area and Triple Integrals 11
5 Cylindrical, Spherical Coordinates, Taylor Series, Jacobian 13
6 Line Integrals, Fundamental Theorem, Green's Theorem, and Parametric Surfaces 16

1 Double Integrals

- Integrals Involving a Parameter

Example 1: Let $\int_{0}^{1} C x^{3} \mathrm{~d} x$ where C is a constant. Then it gives

$$
\begin{equation*}
\int_{0}^{1} C x^{3} \mathrm{~d} x=\frac{1}{4} C \tag{1}
\end{equation*}
$$

The result contains C.

- Suppose we have something like

$$
\begin{equation*}
\int_{a}^{b} f(x, y) \mathrm{d} x=g(y) \tag{2}
\end{equation*}
$$

and therefore y is a parameter
Definition: A variable which is kept constant during an integration is called a parameter.

- Partial integration wrt x

Example 2: An example of partial integration wrt x is

$$
\begin{equation*}
\int_{0}^{1} x^{3} y \mathrm{~d} x=y \int_{0}^{1} x^{3} \mathrm{~d} x=\frac{1}{4} y \tag{3}
\end{equation*}
$$

- Notice the similarity between partial differentiation wrt $x, f_{x}(x, y)$ and the partial integration wrt $x, \int_{a}^{b} f(x, y) \mathrm{d} x$.
- Iterated Integrals (Integral of an Integral)
- Consider $x=f(x, y)$ where $x \in[a, b], y \in[c, d]$. This defines a rectangular region.
- Assume that $f(x, y) \geq 0$. This can be represented as a surface, as shown below:

If we take the integral $\int_{y=c}^{d} f(x, y) \mathrm{d} y=A(x)$, we see that the area of the slice depends on x.
If we suppose that the surface has a tiny thickness Δx, then the volume is

$$
\begin{equation*}
\Delta V(x)=A(x) \cdot \Delta x=\left(\int_{y=c}^{d} f(x, y) \mathrm{d} y\right) \Delta x \tag{4}
\end{equation*}
$$

If we break up the interval $[a, b]$ into N segments

$$
\begin{equation*}
x_{0}=a \leq x_{1} \leq x_{2} \leq \ldots x_{i-1} \leq x_{i} \leq \cdots \leq x_{N-1} \leq x_{N}=b \tag{5}
\end{equation*}
$$

with $\Delta x_{i}=x_{i}-x_{i-1}$. We can then approximate the volume as

$$
\begin{equation*}
V \approx \sum_{i=1}^{N} \Delta V_{i}=\sum_{i=1}^{N} A\left(x_{i}\right) \Delta x_{i} \tag{6}
\end{equation*}
$$

which is known as a Riemann sum.
Idea: As we take the limit as $N \rightarrow \infty$ which implies $\Delta x_{i} \rightarrow 0$, we get the double integral:

$$
\begin{equation*}
V=\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x \tag{7}
\end{equation*}
$$

which can be determined by calculating two integrals.

- Similarly, we can find the volume by taking slices parallel to the $x z$ plane.

The area of each slice is a function of y :

$$
\begin{equation*}
A(y)=\int_{a}^{b} f(x, y) \mathrm{d} x \tag{8}
\end{equation*}
$$

so we have $\Delta V(y)=A(y) \cdot \Delta y$. Again, summing up all slices and taking the limit, we get

$$
\begin{equation*}
V=\int_{c}^{d} A(y) \mathrm{d} y=\int_{c}^{d} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{9}
\end{equation*}
$$

Theorem: Fubini's Theorem tells us that

$$
\begin{equation*}
\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{10}
\end{equation*}
$$

The analog for equality of mixed partial derivatives is known as Clairut's Theorem.

Example 3: Find the volume under the surface $z=x^{2} y$ where $x \in[1,3]$ and $y \in[0,1]$. We first form the integral by integrating wrt y. We have

$$
\begin{align*}
V & =\int_{1}^{3} \int_{0}^{1} x^{2} y \mathrm{~d} y \mathrm{~d} x \tag{11}\\
& =\int_{1}^{3} x^{2}\left(1^{2} / 2-0^{2} / 2\right) \mathrm{d} x \tag{12}\\
& =\int_{1}^{3} \frac{x^{2}}{2} \mathrm{~d} x \tag{13}\\
& =\frac{13}{3} \tag{14}
\end{align*}
$$

We can also form the integral by integrate it wrt x :

$$
\begin{align*}
V & =\int_{0}^{1} \int_{1}^{3} x^{2} y \mathrm{~d} x \mathrm{~d} y \tag{15}\\
& =\int_{0}^{1} \frac{26}{3} y \mathrm{~d} y \tag{16}\\
& =\frac{13}{3} \tag{17}
\end{align*}
$$

so we can confirm they give the same answer.

Example 4: Evaluate the double integral of $f(x, y)=x-3 y^{2}$ over region R where

$$
\begin{equation*}
R=\{(x, y) \mid 0 \leq x \leq 2,1 \leq y \leq 2\} \tag{18}
\end{equation*}
$$

To do this, we have

$$
\begin{align*}
\int_{0}^{2} \int_{1}^{2}\left(x-3 y^{2}\right) \mathrm{d} y \mathrm{~d} x & =\left.\int_{0}^{2}\left(x y-y^{3}\right)\right|_{y=1} ^{y=2} \mathrm{~d} x \tag{19}\\
& =\int_{0}^{2}(x-7) \mathrm{d} x \tag{20}\\
& =-12 \tag{21}
\end{align*}
$$

- Note that in the special case where the function $f(x, y)$ is $f(x, y)=g(x) \cdot h(y)$, then

$$
\begin{equation*}
\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{c}^{d}\left[h(y) \int_{a}^{b} g(x) \mathrm{d} x\right] \mathrm{d} y=\int_{a}^{b} g(x) \mathrm{d} x \cdot \int_{c}^{d} h(y) \mathrm{d} y \tag{22}
\end{equation*}
$$

This gives us a shortcut of evaluating double integrals in this form.

- Double integrals over general regions (What if region is non-rectangular?)
- Type 1 Region is in the form of

$$
\begin{equation*}
R=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\} \tag{23}
\end{equation*}
$$

Here are some examples

Example of Type 1

- Let's think about the case where $f(x, y) \geq 0$ on a type-1 region. Suppose we have the following illustration

We find the area of slices, so

$$
\begin{equation*}
A(x)=\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \mathrm{d} y \tag{24}
\end{equation*}
$$

and the volume is thus

$$
\begin{equation*}
V=\int_{a}^{b} A(x) \mathrm{d} X=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(X)} f(x, y) \mathrm{d} y \mathrm{~d} x \tag{25}
\end{equation*}
$$

- Type-2 regions have the form

$$
\begin{equation*}
R=\left\{(x, y) \mid c \leq y \leq d \text { and } h_{1}(y) \leq x \leq h_{2}(y)\right\} \tag{26}
\end{equation*}
$$

In a similar way, the volume bounded by this region is

$$
\begin{equation*}
V=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{27}
\end{equation*}
$$

- Type-3 regions are neither type-1 nor type-2. It is possible to break up the region into parts that can be classified as either type-1 or type-2:

Idea: While these formulas are derived by assuming a positive volume (and thus cannot work if $f<0$), they still work in general.

Example 5: Find the volume of the solid that lies under the surface

$$
\begin{equation*}
z=f(x, y)=x^{2}+y^{2} \tag{28}
\end{equation*}
$$

and above the region R in the $x y$-plane. The region R is bounded by the straight line $y=2 x$ and the parabola $y=x^{2}$.

1. First we draw a diagram of the planar region R over which the surface is defined.

Example

2. We then draw a line parallel to the axis of first integration (i.e. vertical lines for integrating in the y-direction first)
3. This gives us

$$
\begin{align*}
V & =\int_{x=0}^{x=2} \int_{y=x^{2}}^{y=2 x} f(x, y) \mathrm{d} y \mathrm{~d} x \tag{29}\\
& =\int_{0}^{2} \int_{x^{2}}^{2 x}\left(x^{2}+y^{2}\right) \mathrm{d} y \mathrm{~d} x \tag{30}\\
& =\frac{216}{35} \tag{31}
\end{align*}
$$

Alternatively, we can find the volume by integrating in the x direction first. In this case, we need to obtain boundary curves in the $x=x(y)$ form:

$$
\begin{align*}
& y=x^{2} \Longrightarrow x=\sqrt{y} \tag{32}\\
& y=2 x \Longrightarrow x=y / 2 \tag{33}
\end{align*}
$$

This then gives us

$$
\begin{align*}
V & =\int_{y=0}^{y=4} \int_{x=y / 2}^{x=\sqrt{y}} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{34}\\
& =\frac{216}{35} \tag{35}
\end{align*}
$$

Warning: Do not just pick the minimum and maximum points. For example, the following is incorrect

$$
\begin{equation*}
\int_{y=0}^{y=4} \int_{x=0}^{x=2} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{36}
\end{equation*}
$$

as that corresponds with a rectangular region.

Example 6: Integrate the surface given by $z=e^{x^{2}}$ over the following region:
We can first integrate wrt x

$$
\begin{equation*}
V=\in_{y=0}^{y=1} \int_{x=y}^{x=1} e^{x^{2}} \mathrm{~d} x \mathrm{~d} y \tag{37}
\end{equation*}
$$

This is a hard problem since we don't know the anti-derivative of $e^{x^{2}}$. To solve this, we can first integrate wrt y, which gives us

$$
\begin{align*}
V & =\int_{x=0}^{x=1} \int_{y=0}^{y=x} e^{x^{2}} \mathrm{~d} y \mathrm{~d} x \tag{38}\\
& =\int_{0}^{1} e^{x^{2}} x \mathrm{~d} x \tag{39}
\end{align*}
$$

This integral can be more easily solved using the u-sub $u=x^{2}, \mathrm{~d} u=2 x \mathrm{~d} x$ to get

$$
\begin{equation*}
V=\frac{1}{2}(e-1) \tag{40}
\end{equation*}
$$

2 Formal Definition of Double Integrals

- We will see two ways of defining double integrals.
- First, let us review the formal definition of definite integrals for functions of a single variable.

To determine the area under a curve in the region $x \in[a, b]$, we can break the region up into intervals Δx_{i}, so the Riemann sum is

$$
\begin{equation*}
A \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} \tag{41}
\end{equation*}
$$

Let $m_{i} \leq f\left(x_{i}^{*}\right) \leq M_{i}$ for $x_{i}^{*} \in \Delta x_{i}$. Then:

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i} \Delta x_{i} \leq \quad \underbrace{\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}} \quad \leq \sum_{i=1}^{n} M_{i} \Delta x_{i} \tag{42}
\end{equation*}
$$

If the Δx_{i} are of equal length and we take the limit, we can define:

$$
\begin{equation*}
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\int_{a}^{b} f(x) \mathrm{d} x \tag{43}
\end{equation*}
$$

If they are not of equal length, we need to define the norm of the partition $\|P\|=\left(\Delta x_{i}\right)_{\max }$ for $i=1,2, \ldots, n$. This way, the integral can be alternatively defined as

$$
\begin{equation*}
A=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\int_{a}^{b} f(x) \mathrm{d} x \tag{44}
\end{equation*}
$$

- Consider a double integral over rectangular region. Let $z=f(x, y)$ be defined on $R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$. Assume $f(x, y) \geq 0$ over R.
- Formal Definition 1: We can approximate the volume as

$$
\begin{equation*}
\Delta v_{i} \approx f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta A_{i} \tag{45}
\end{equation*}
$$

where $\Delta A_{i}=\Delta x_{i} \cdot \Delta y_{i}$. The Riemann sum is then

$$
\begin{equation*}
V \approx \sum_{i=1}^{N} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta A_{i} \tag{46}
\end{equation*}
$$

We can pick x_{i}^{*}, y_{i}^{*} such that $f\left(x_{i}^{*}, y_{i}^{*}\right)$ is the smallest and largest value in the region, we can bound the Riemann sum by:

$$
\begin{equation*}
\sum_{i=1}^{N} m_{i} \Delta x_{i} \Delta y_{i} \leq \sum_{i=1}^{N} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta x_{i} \Delta y_{i} \leq \sum_{i=1}^{N} M_{i} \Delta x_{i} \Delta y_{i} \tag{47}
\end{equation*}
$$

Warning: Taking the limit where $N \rightarrow \infty$ is not sufficient, as it does not necessarily mean the size of all partitions approach zero.

We define the norm of the partition to be

$$
\begin{equation*}
\|P\|=\max \left(\Delta d_{i}\right) \tag{48}
\end{equation*}
$$

for $i=1,2, \ldots, N$. Therefore:

$$
\begin{equation*}
V=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{N} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta A_{i}=\iint_{R} f(x, y) \mathrm{d} A=\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{49}
\end{equation*}
$$

Idea: Functions that are continuous are integrable over that region.

- Formal Definition 2: We are free to divide the region R into any tiling, we can use uniform divisions.

As a result, the area of each tile is

$$
\begin{equation*}
\Delta A_{i j}=\Delta x_{i} \Delta y_{j} \tag{50}
\end{equation*}
$$

where the (i, j) represent the coordinate of the tile. The double Riemann sum is then:

$$
\begin{equation*}
V \approx \sum_{j=1}^{m} \sum_{i=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta x_{i} \Delta y_{j} \tag{51}
\end{equation*}
$$

Again, we can define $m_{i j}$ and $M_{i j}$ such that

$$
\begin{equation*}
\sum_{j=1}^{m} \sum_{i=1}^{n} m_{i j} \Delta x_{i} \Delta y_{j} \leq \sum_{j=1}^{m} \sum_{i=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta x_{i} \Delta y_{j} \leq \sum_{j=1}^{m} \sum_{i=1}^{n} M_{i j} \Delta x_{i} \Delta y_{j} \tag{52}
\end{equation*}
$$

Since these intervals are equally partitioned, we can define

$$
\begin{equation*}
V=\lim _{m, n \rightarrow \infty} \sum_{j=1}^{m} \sum_{i=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A_{i j}=\iint_{R} f(x, y) \mathrm{d} A \tag{53}
\end{equation*}
$$

If they were not, we would have to define the norm again.

Example 7: Estimate the volume of the solid that lies above the square $R=[0,2] \times[0,2]$ and below the elliptic paraboloid $z=16-x^{2}-2 y^{2}$. Divide R into four equal squares $\&$ choose the sample point to be the upper corner of each square.

We would then have:

$$
\begin{align*}
V & \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \tag{54}\\
& \approx f(1,1) \Delta A+f(1,2) \Delta A+f(2,1) \Delta A+f(2,2) \Delta A \tag{55}\\
& \approx 34 \tag{56}
\end{align*}
$$

Note that the actual answer is 48 . The approximation will improve as the number of regions increase.

- We can also define double integrals over non-rectangular regions.
- Definition 1: We can again tile a region using rectangular regions in two ways:
- Each tile is contained within R and there are some space.
- Some tiles extend past the boundary of R, which is completely covered.

When we take the limit as $\|P\| \rightarrow 0$, both of these tiling methods will approach the actual area, so using any of these tilings will cause the double integral to approach the actual volume.
If $f(x, y)$ is a continuous function over R, then

$$
\begin{equation*}
V=\lim _{\|P\|} \sum f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta A_{i}=\lim _{\|P\| \rightarrow 0} \sum_{j=1}^{N} f\left(x_{j}^{*}, y_{j}^{*}\right) \Delta A_{j}=\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{57}
\end{equation*}
$$

- Definition 2: Similarly, we can use uniform partitions that either leave gaps or extend past the region. We can again define $m_{i j}$ and $M_{i j}$ for each tile $R_{i j}$ such that

$$
\begin{equation*}
V=\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\lim _{\|P\| \rightarrow 0} \sum_{j=1}^{M} \sum_{i=1}^{N} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta x_{i} \Delta y_{j} \tag{58}
\end{equation*}
$$

3 Double Integrals in Polar Coordinates

- Using polar coordinates is helpful when integrating over circular regions.
- Recall that we can convert between rectangular and polar coordinates via

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{59}
\end{equation*}
$$

and that the area of a sector is

$$
\begin{equation*}
A=\frac{1}{2} r^{2} \theta \tag{60}
\end{equation*}
$$

- Suppose we have some function $f(x, y)$ defined on $R=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}$. We can then define:

$$
\begin{equation*}
f(x, y)=f(r \cos \theta, r \sin \theta)=g(r, \theta) \tag{61}
\end{equation*}
$$

Assume $f(x, y)=g(r, \theta) \geq 0$ on R. Then we can approximate the volume as

$$
\begin{equation*}
\Delta V_{i} \approx g\left(r_{i}^{*}, \theta_{i}^{*}\right) \cdot \Delta A_{i}=f\left(r_{i}^{*} \cos \theta_{i}^{*}, r_{i}^{*} \sin \theta_{i}^{*}\right) \cdot r_{i} \Delta r_{i} \Delta \theta_{i}\left(1+\frac{\Delta r_{i}}{2 r_{i}}\right) \tag{62}
\end{equation*}
$$

Taking the limit, we have

$$
\begin{align*}
& V=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} f\left(r_{i}^{*} \cos \theta_{i}^{*}, r_{i}^{*} \sin \theta_{i}^{*}\right) r_{i} \Delta r_{i} \Delta \theta_{i} \tag{63}\\
& *=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta . \tag{64}
\end{align*}
$$

We can generalize this finding regardless of whether the function is positive or negative over R.
Idea: In a region bounded by $\alpha \leq \theta \leq \beta, a \leq r \leq b$, we have

$$
\begin{equation*}
\iint_{R} f(x, y) \mathrm{d} A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta \tag{65}
\end{equation*}
$$

- We can extend this to more complicated regions. Suppose R is bounded by $\alpha \leq \theta \leq \beta$ and $g(\theta) \leq r \leq g_{2}(\theta)$. Then the volume would be

$$
\begin{equation*}
\iint_{R} f(x, y) \mathrm{d} A=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta \tag{66}
\end{equation*}
$$

- Similarly, if R is bounded by $a \leq r \leq b$ and $h_{1}(r) \leq \theta \leq h_{2}(r)$, we have

$$
\begin{equation*}
\iint_{R} f(x, y) \mathrm{d} A=\int_{a}^{b} \int_{h_{1}(r)}^{h_{2}(r)} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta \tag{67}
\end{equation*}
$$

Example 8: Evaluate $\iint_{R}\left(3 x+4 y^{2}\right) \mathrm{d} A$ where R is the region in the upper half-plane bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
This leads to the region $R=\{(r, \theta) \mid 1 \leq r \leq 2,0 \leq \theta \leq \pi\}$. Then:

$$
\begin{align*}
I & =\iint_{R}\left(3 x+4 y^{2}\right) \mathrm{d} A \tag{68}\\
& =\int_{0}^{\pi} \int_{1}^{2}\left(3 r \cos \theta+4 r^{2} \sin ^{2} \theta\right) r \mathrm{~d} r \mathrm{~d} \theta \tag{69}
\end{align*}
$$

Solving this integral gives $\frac{15}{2} \pi$.

Example 9: Find the volume of the solid bounded by the $z=0$ plane and the parabaloid $z=1-x^{2}-y^{2}$.
Note that at $z=0$, we get $0=1-x^{2}-y^{2} \Longrightarrow x^{2}+y^{2}=1$. We can write our region as $R=\{(r, \theta) \mid 0 \leq r \leq$ $1,0 \leq \theta \leq 2 \pi\}$. Our double integral is then

$$
\begin{equation*}
V=\iint_{R}\left(1-x^{2}-y^{2}\right) \mathrm{d} A=\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r \mathrm{~d} r \mathrm{~d} \theta \tag{70}
\end{equation*}
$$

Solving this gives $V=\pi / 2$.

Example 10: Find the area enclosed by one petal of the rose given by $r=\cos 3 \theta$.

The area is

$$
\begin{equation*}
A=\int_{-\pi / 6}^{\pi / 6} \int_{0}^{\cos 3 \theta} 1 \cdot r \mathrm{~d} r \mathrm{~d} \theta \tag{71}
\end{equation*}
$$

$$
\text { which evaluates to } \frac{1}{12} \text {. }
$$

Example 11: Find the volume trapped between the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=1$.
First, let us find the intersection using cartesian coordinates. We have

$$
\begin{equation*}
\sqrt{x^{2}+y^{2}}=\sqrt{1-x^{2}-y^{2}} \Longrightarrow x^{2}+y^{2}=\frac{1}{2} \tag{72}
\end{equation*}
$$

This can be written as $r=\frac{1}{\sqrt{2}}$ in polar coordinates. The volume is thus

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{1 / \sqrt{2}} f(x, y) r \mathrm{~d} r \mathrm{~d} \theta \tag{73}
\end{equation*}
$$

where $f(x, y)=\sqrt{1-x^{2}-y^{2}}-\sqrt{x^{2}+y^{2}}$. This gives $\frac{2 \pi}{3}\left(1-\frac{1}{\sqrt{2}}\right)$.

- Applications of Double Integrals

- We can determine the mass of a plate with nonuniform density $\rho=\rho(x, y)$. The mass is then

$$
\begin{equation*}
\iint_{R} \rho(x, y) \mathrm{d} A \tag{74}
\end{equation*}
$$

- We can find the center of mass of a particle. Imagine we break a plate into small pieces. Each small piece has a moment about the x axis:

$$
\begin{equation*}
\left(M_{x}\right)_{i}=m_{i} y_{i}^{*} \approx \rho\left(x_{i}^{*}, y_{i}^{*}\right) \Delta A_{i} \cdot y_{i}^{*} \tag{75}
\end{equation*}
$$

The total x and y moments are thus

$$
\begin{align*}
M_{x} & =\iint_{R} y \rho(x, y) \mathrm{d} A \tag{76}\\
M_{y} & =\iint_{R} x \rho(x, y) \mathrm{d} A \tag{77}
\end{align*}
$$

These are equal to the moment $\bar{y} m$ and $\bar{x} m$, respectively, where m is the mass of the object. Thus:

$$
\begin{equation*}
\bar{x}=\frac{\iint_{R} x \rho(x, y) \mathrm{d} A}{\iint_{R} \rho(x, y) \mathrm{d} A} \tag{78}
\end{equation*}
$$

and similarly for \bar{y}.

- Consider a rotating object. A point mass has a kinetic energy $K=\frac{1}{2} m r^{2} \omega^{2}$. However, $m r^{2}$ would be different for different points on a solid object.
We can consider:

$$
\begin{equation*}
K=\frac{1}{2}\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}\right) \omega^{2} . \tag{79}
\end{equation*}
$$

The quantity inside the parentheses is known as the moment of inertia I. While this may be true for a series of point masses, for a continuous distribution we need to take the limit:

$$
\begin{equation*}
I=\iint_{R} \rho(x, y)[r(x, y)]^{2} \mathrm{~d} x \mathrm{~d} y \tag{80}
\end{equation*}
$$

4 Surface Area and Triple Integrals

- Suppose we wish to find the surface area.
- Method 1: Given $z=f(x, y)$ we can estimate the area as

$$
\begin{equation*}
S \iint_{S} \mathrm{~d} T \tag{81}
\end{equation*}
$$

where $\mathrm{d} T$ gives the area of the tangent plane and S is the region of the curve. The projection of $\mathrm{d} T$ is given by

$$
\begin{equation*}
\Delta A=\Delta T|\cos \alpha| \Longrightarrow \frac{\Delta A}{|\cos \alpha|} \tag{82}
\end{equation*}
$$

where α is the angle between \vec{n} (normal to plane) and \vec{k} (normal to $x y$ plane), such that

$$
\begin{equation*}
S=\iint_{R} \frac{\mathrm{~d} A}{|\cos \alpha|} \tag{83}
\end{equation*}
$$

where R is the projection of S. To determine $\cos \alpha$, we can write $z=f(x, y)$ in explicit form as

$$
\begin{equation*}
F(x, y, z)=z-f(x, y)=0 \tag{84}
\end{equation*}
$$

which is the $0^{\text {th }}$ level surface. Since $\vec{\nabla}$ is perpendicular to it, we have

$$
\begin{equation*}
\vec{n}=\frac{\vec{\nabla} F}{\|\vec{\nabla} F\|} \tag{85}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
\vec{\nabla} F \cdot \vec{k}=\left(\frac{\partial F}{\partial x} \hat{i}+\frac{\partial F}{\partial y} \hat{j}+\frac{\partial F}{\partial z} \hat{k}\right) \cdot \vec{k} \tag{86}
\end{equation*}
$$

so

$$
\begin{equation*}
|\cos \alpha|=|\vec{n} \cdot \vec{k}|=\frac{|\vec{\nabla} F \cdot \vec{k}|}{\|\vec{\nabla} F\|}=\frac{\left|\frac{\partial F}{\partial z}\right|}{\|\vec{\nabla} F\|} \tag{87}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
S=\iint_{R} \frac{\sqrt{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}}}{\left|\frac{\partial F}{\partial z}\right|} \mathrm{d} A \tag{88}
\end{equation*}
$$

which can be simplified to

$$
\begin{equation*}
S=\iint_{R} \sqrt{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+1} \mathrm{~d} A \tag{89}
\end{equation*}
$$

- Method 2: Consider a rectangular subregion R_{i} with area $\Delta A_{i}=\Delta y_{i} \times \Delta x_{i}$. Projecting this onto $z=f(x, y)$ gives a parallelogram. This parallelogram has sides

$$
\begin{align*}
& \vec{a}_{i}=\Delta x_{i} \cdot \hat{i}+0 \hat{j}+f_{x}\left(x_{i}, y_{i}\right) \Delta x_{i} \hat{k} \tag{90}\\
& \vec{b}_{i}=0 \hat{i}+\Delta y_{i} \cdot \hat{j}+f_{y}\left(x_{i}, y_{i}\right) \Delta x_{i} \hat{k} \tag{91}
\end{align*}
$$

The area of the parallelogram is $\Delta T_{i}=\left\|\vec{a}_{i} \times \vec{b}_{i}\right\|$. Taking the cross product, we get

$$
\begin{equation*}
S=\iint_{R} \sqrt{f_{x}^{2}(x, y)+f_{y}^{2}(x, y)+1} \tag{92}
\end{equation*}
$$

- All the ideas for double integrals carry over for triple Integrals. Formally, we can break it up into sub-volumes, gain an estimate by finding the largest and smallest value in each ΔV_{i}, which bound the triple integral and approach to it after taking the limit.

Example 12: Suppose $f(x, y, z)$ is a continuous function defined on the box region Q, given by

$$
\begin{equation*}
Q=\{(x, y, z) \mid a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\} \tag{93}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\iiint_{Q} f(x, y, z) \mathrm{d} V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \tag{94}
\end{equation*}
$$

- Suppose we have something more complicated like $Q=\left\{(x, y, z) \mid(x, y) \in R\right.$ and $g_{1}(x, y) \leq z \leq(x, y)$. We will then have

$$
\begin{equation*}
\iint_{R} \int_{g_{1}(x, y)}^{g_{2}(x, y)} f(x, y, z) \mathrm{d} z \mathrm{~d} A \tag{95}
\end{equation*}
$$

Example 13: Evaluate $\iiint_{Q} 6 x y \mathrm{~d} V$ where Q is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $2 x+y+z=4$. We then have

$$
\begin{equation*}
\int_{x=0}^{x=2} \int_{y=0}^{y=4-2 x} \int_{z=0}^{z=4-2 x-y} 6 x y \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x . \tag{96}
\end{equation*}
$$

If we want to first integrate with respect to x, we have

$$
\begin{equation*}
\int_{y=0}^{y=4} \int_{z=0}^{z=4-y} \int_{x=0}^{x=1 / 2(4-y-z)} \tag{97}
\end{equation*}
$$

5 Cylindrical, Spherical Coordinates, Taylor Series, Jacobian

- In cylindrical coordinates, we can represent a point in \mathbb{R}^{3} as

$$
\begin{equation*}
P(x, y, z)=P(r, \theta, z) \tag{98}
\end{equation*}
$$

We can describe a region as

$$
\begin{equation*}
Q=\left\{(x, y, z) \mid(x, y) \in R, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\} \tag{99}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\} \tag{100}
\end{equation*}
$$

and the integral can be written as

$$
\begin{align*}
\iiint_{Q} f(x, y, z) \mathrm{d} V & =\iint_{R}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)}\right] \mathrm{d} A \tag{101}\\
& =\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta . \tag{102}
\end{align*}
$$

- In spherical coordinates, a point can be represented by

$$
\begin{equation*}
P(x, y, z)=P(\rho, \theta, \phi) \tag{103}
\end{equation*}
$$

where θ is the same as the one in cylindrical coordinates ${ }^{1}$. We have

$$
\begin{align*}
& x=\rho \sin \phi \cos \theta \tag{104}\\
& y=\rho \sin \phi \sin \theta \tag{105}\\
& z=\rho \cos \phi \tag{106}
\end{align*}
$$

and

$$
\begin{equation*}
\rho^{2}=x^{2}+y^{2}+z^{2} . \tag{107}
\end{equation*}
$$

- The volume in spherical coordinates is given by

$$
\begin{equation*}
\mathrm{d} V=\rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \phi \mathrm{~d} \theta \tag{108}
\end{equation*}
$$

Idea: We can create a change of basis from $\hat{i}, \hat{j}, \hat{k}$ to e_{ρ}, e_{θ}, and e_{ϕ} as follows:

$$
\begin{align*}
& e_{\rho}=\sin \phi \cos \theta \hat{i}+\sin \phi \cos \theta \hat{j}+\cos \phi \hat{k} \tag{109}\\
& e_{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}+0 \hat{k} \tag{110}\\
& e_{\phi}=\cos \phi \cos \theta \hat{i}+\cos \phi \sin \theta \hat{j}-\sin \theta \hat{k} \tag{111}
\end{align*}
$$

[^0]which can be represented in the following transformation:
\[

[v]_{cartesian}=\left[$$
\begin{array}{ccc}
\cos \theta \sin \phi & -\sin \theta & \cos \theta \cos \phi \tag{112}\\
\sin \theta \sin \phi & \cos \theta & \sin \theta \cos \phi \\
\cos \phi & 0 & -\sin \phi
\end{array}
$$\right][v]_{spherical}
\]

That is, if you coordinates in the spherical basis, then you can use this transformation to get the coordinates in the cartesian basis. This means that at a particular θ and ϕ, the unit vector $e_{\rho}=(1,0,0)$ maps to $(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$, which is what we expect. Let this transformation matrix be M. Since M is composed of only unit vectors, the inverse is the transpose:

$$
[v]_{\text {spherical }}=\left[\begin{array}{ccc}
\cos \theta \sin \phi & \sin \theta \sin \phi & \cos \phi \tag{113}\\
-\sin \theta & \cos \theta & 0 \\
\cos \theta \cos \phi & \sin \theta \cos \phi & -\sin \phi
\end{array}\right][v]_{\text {cartesian }}
$$

So any vector written in the cartesian basis can be written in terms of the spherical basis vectors via this transformation.

- Taylor Series for Two-Variable Functions: Suppose we are given $f\left(x_{0}, y_{0}\right)$ and want to approximate $f\left(x_{0}+\Delta x, y_{0}+\right.$ $\Delta y)$. Suppose there projections on the $x y$ plane is P and Q. We can parametrize the line segment $P Q$ as

$$
\begin{align*}
x(t) & =x_{0}+t \Delta x \tag{114}\\
y(t) & =y_{0}+t \Delta y \tag{115}
\end{align*}
$$

where $0 \leq t \leq 1$. We can then define

$$
\begin{equation*}
F(t)=f\left(x_{0}+t \Delta x, y_{0}+t \Delta y\right) \tag{116}
\end{equation*}
$$

which is a one-variable function, which we can approximate using the one dimensional Taylor Series:

$$
\begin{equation*}
F^{\prime}(t)=\frac{\partial f}{\partial x} \Delta x+\frac{\partial f}{\partial y} \Delta y \tag{117}
\end{equation*}
$$

The second derivative is

$$
\begin{equation*}
F^{\prime \prime}(t)=\frac{\partial^{2} f}{\partial x^{2}} \Delta x^{2}+2 \frac{\partial^{2} f}{\partial x \partial y} \Delta x \Delta y+\frac{\partial^{2} f}{\partial y^{2}} \Delta y^{2} \tag{118}
\end{equation*}
$$

The third derivative is

$$
\begin{equation*}
F^{\prime \prime \prime}(t)=\frac{\partial^{3} f}{\partial x^{3}} \Delta x^{3}+3 \frac{\partial^{3} f}{\partial x^{2} \partial y} \Delta x^{2} \Delta y+3 \frac{\partial^{3} f}{\partial x \partial y^{2}} \Delta x \Delta y^{2}+\frac{\partial^{3} f}{\partial y^{3}} \Delta y^{3} \tag{119}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
F\left(t_{0}+\Delta t\right) \approx F\left(t_{0}\right)+F^{\prime}\left(t_{0}\right) \Delta t+\frac{1}{2!} F^{\prime \prime}\left(t_{0}\right) \Delta t^{2}+\cdots+\frac{F^{(n)}\left(t_{0}\right) \Delta t}{n!} \tag{120}
\end{equation*}
$$

- Change of Variables in Multiple Integrals: Consider a bijective mapping between a region S in the $u v$ plane to a region R in the $x y$ plane. We can partition both regions into N regions.
Specifically, let us partition S into square regions. Consider an arbitrary region with vertices $\bar{A}\left(u_{0}, v_{0}\right), \bar{B}\left(u_{0}+\Delta u, v_{0}\right)$, $\bar{C}\left(u_{0}, v_{0}+\Delta v\right)$, and \bar{D}. Let the subregion be denoted as S_{i} with area ΔA_{S}.
Suppose we have the mapping

$$
\begin{align*}
& x=g(u, v) \tag{121}\\
& y=h(u, v) \tag{122}
\end{align*}
$$

such that $\bar{X} \mapsto X$. If Δu and Δv are sufficiently small, then $R_{i}=A B C D$ is a parallelogram. Therefore:

$$
\begin{equation*}
\Delta A_{R} \approx \text { area of the parallelogram }=\|\overrightarrow{A B} \times \overrightarrow{A C}\| \tag{123}
\end{equation*}
$$

Note that $\overrightarrow{A B}=\Delta x_{1} \hat{i}+\Delta y_{1} \hat{j}$ and $\overrightarrow{A C}=\Delta x_{2} \hat{i}+\Delta y_{2} \hat{j}$, so their cross product is

$$
\begin{equation*}
\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\left|\Delta x_{1} \Delta y_{2}-\Delta x_{2} \Delta y_{1}\right| \tag{124}
\end{equation*}
$$

From our linear approximation, we can write

$$
\begin{align*}
\Delta x_{1} & \approx g_{u}\left(u_{0}, v_{0}\right) \Delta u \tag{125}\\
\Delta x_{2} & \approx g_{v}\left(u_{0}, v_{0}\right) \Delta v \tag{126}\\
\Delta y_{1} & \approx h_{u}\left(u_{0}, v_{0}\right) \Delta u \tag{127}\\
\Delta y_{2} & \approx h_{v}\left(u_{0}, v_{0}\right) \Delta v \tag{128}
\end{align*}
$$

To sum it up, we have

$$
\Delta A_{R}=\left|\operatorname{det}\left[\begin{array}{ll}
g_{u}\left(u_{0}, v_{0}\right) & g_{v}\left(u_{0}, v_{0}\right) \tag{129}\\
h_{u}\left(u_{0}, v_{0}\right) & h_{v}\left(u_{0}, v_{0}\right)
\end{array}\right]\right| \Delta u \Delta v
$$

Definition: The determinant of the derivative matrix is called the Jacobian (J) of the transformation.

$$
J=\operatorname{det}\left[\begin{array}{ll}
g_{u} & g_{v} \tag{130}\\
h_{u} & h_{v}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right] \equiv \frac{\partial(x, y)}{\partial(u, v)}
$$

given

$$
\begin{align*}
& x=g(u, v) \tag{131}\\
& y=h(u, v) \tag{132}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\Delta A_{R} \approx|J| \Delta A_{S} \tag{133}
\end{equation*}
$$

Theorem: Assuming that

- f is continuous
- g and h are functions that have continuous first derivatives
- The transformation is $1-1$.
- The Jacobian J is nonzero
we can write

$$
\begin{equation*}
\iint_{R} f(x, y) \mathrm{d} A=\iint_{S} f(g(u, v), h(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v \tag{134}
\end{equation*}
$$

Note the similarity between this and the single variable case

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\int_{c}^{d} f(x(u)) \frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u \tag{135}
\end{equation*}
$$

Example 14: Suppose we wish to evaluate the integral $\iint_{R}\left(x^{2}+2 x y\right) \mathrm{d} A$ where R is the region bounded by the lines

$$
\begin{align*}
& y=2 x+3 \tag{136}\\
& y=2 x+1 \tag{137}\\
& y=5-x \tag{138}\\
& y=2-x \tag{139}
\end{align*}
$$

Notice that this is a rotated rectangle, so let's try to switch this into a non-rotated rectangle with the bounds:

$$
\begin{align*}
& u=3 \tag{140}\\
& u=1 \tag{141}\\
& v=5 \tag{142}\\
& v=2 \tag{143}
\end{align*}
$$

by the transformation

$$
\begin{align*}
& x=\frac{1}{3}(v-u) \tag{144}\\
& y=\frac{1}{3}(2 v+u) . \tag{145}
\end{align*}
$$

The Jacobian is

$$
J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \tag{146}\\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
-1 / 3 & 1 / 3 \\
1 / 3 & 2 / 3
\end{array}\right]=-\frac{1}{3}
$$

which gives

$$
\begin{equation*}
\iint_{R}\left(x^{2}+2 x y\right) \mathrm{d} A=\iint_{S}\left[\frac{1}{3}(v-u)^{2}+\frac{2}{3}(v-u)(2 v+u)\right]|J| \mathrm{d} u \mathrm{~d} v \tag{147}
\end{equation*}
$$

where $S=\{(u, v) \mid 1 \leq u \leq 3,2 \leq v \leq 5\}$

- For triple integrals, the Jacobian is

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\operatorname{det}\left[\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \tag{148}\\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right]
$$

- Successive Transformations: Suppose we have $x=x(u, v), y=y(u, v)$ and $u=u(s, t)$ and $v=v(s, t)$. Then

$$
\begin{equation*}
\frac{\partial(x, y)}{\partial(s, t)}=\frac{\partial(x, y)}{\partial(u, v)} \cdot \frac{\partial(u, v)}{\partial(s, t)} \tag{149}
\end{equation*}
$$

- Back Transformations: Recall that when we transform a region R to a region S with some transformation T, then

$$
\begin{equation*}
\mathrm{d} A_{R}=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} A_{S} \tag{150}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d} A_{S}=\left|\frac{\partial(u, v)}{\partial(x, y)}\right| \mathrm{d} A_{R} \tag{151}
\end{equation*}
$$

Theorem: Jacobians satisfy the property:

$$
\begin{equation*}
\frac{\partial(x, y)}{\partial(u, v)}=\left(\frac{\partial(u, v)}{\partial(x, y)}\right)^{-1} \tag{152}
\end{equation*}
$$

or

$$
\begin{equation*}
J_{S \rightarrow R}=\frac{1}{J_{R \rightarrow S}} \tag{153}
\end{equation*}
$$

Idea: This is important since if we know $u=f(x, y)$ and $v=g(x, y)$, then we can calculate the Jacobian without finding the inverse.

6 Line Integrals, Fundamental Theorem, Green's Theorem, and Parametric Surfaces

- Suppose we have a line in \mathbb{R}^{3} and we wish to evaluate a function along this line.
- We can break this line into segments Δs_{i} and sum up

$$
\begin{equation*}
f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i} \tag{154}
\end{equation*}
$$

Taking the limit, we get

$$
\begin{equation*}
\int_{C} f(x, y) \mathrm{d} s \tag{155}
\end{equation*}
$$

- Taking $f(x, y)=1$ gives the length of the line segment C.
- We need to assume that
- f is continuous
- C is smooth $\left(\vec{r}(t)\right.$ is continuous and $\vec{r}^{\prime}(t) \neq 0$ except at endpoints)
and have the curve be parametrized

$$
\begin{equation*}
\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j} \tag{156}
\end{equation*}
$$

so we can write

$$
\begin{equation*}
\mathrm{d} s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t \tag{157}
\end{equation*}
$$

Example 15: Suppose we wish to find the center of mass of a semi-circular length of wire. The length density is to be taken as constant. Note that $\bar{x}=0$ by symmetry. The moment about the x axis is then:

$$
\begin{equation*}
m \bar{y}=\int_{C} y \rho \mathrm{~d} s \tag{158}
\end{equation*}
$$

We can parametrize $\vec{r}(t)=a \cos t \hat{i}+a \sin t \hat{j}$ and $\mathrm{d} s=a \mathrm{~d} t$. Therefore:

$$
\begin{equation*}
\bar{y}=\frac{1}{m} \int_{C} y \rho \mathrm{~d} s=\frac{1}{m} \int_{0}^{\pi} a \sin t \rho a \mathrm{~d} t=\frac{2 a}{\pi} . \tag{159}
\end{equation*}
$$

- In the special case where C is parallel to the x axis, then we can reduce it to the familiar single-variable integral.
- Three-Dimensions: We can easily extend it to three dimensions:

$$
\begin{equation*}
\int_{C} f(x, y, z) \mathrm{d} s=\int_{a}^{b} f(\vec{r}(t)) \cdot\left\|\vec{r}^{\prime}(t)\right\| \mathrm{d} t \tag{160}
\end{equation*}
$$

- For a piecewise smooth curve, we need to break up the line integral into several smaller ones.

Idea: Let $f(x, y)$ be a scalar. Then $\int_{C} f(x, y) \mathrm{d} s=\int_{-C} f(x, y) \mathrm{d} s$. This is because $\mathrm{d} s$ is always positive.

- Suppose we have a vector field

$$
\begin{equation*}
\vec{F}(x, y, z)=P(x, y, z) \hat{i}+Q(x, y, z) \hat{j}+R(x, y, z) \hat{k}=\vec{F}(\vec{r}) \tag{161}
\end{equation*}
$$

- The work done along a curve C is given by

$$
\begin{equation*}
\int_{C} \vec{F}(x, y, z) \cdot \vec{T}(x, y, z) \mathrm{d} s=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) \mathrm{d} t=\int_{C} \vec{F} \cdot \vec{r} \tag{162}
\end{equation*}
$$

- NOte that if we have $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ where $a \leq t \leq b$, then

$$
\begin{equation*}
\frac{d \vec{r}(t)}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k} \tag{163}
\end{equation*}
$$

so

$$
\begin{align*}
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r} & =\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) \mathrm{d} t \tag{164}\\
& =\int_{a}^{b}(P \hat{i}+Q \hat{j}+R \hat{k}) \cdot\left(\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}\right) \mathrm{d} t \tag{165}\\
& =\int_{C} P \mathrm{~d} x+\int_{C} Q \mathrm{~d} y+\int_{C} R \mathrm{~d} z \tag{166}
\end{align*}
$$

Definition: A vector field \vec{F} is called a conservative vector field if it is the gradient of some scalar function $\vec{\nabla} f$. In this situation, the scalar function is called a potential function of \vec{F}.

- Suppose that $\vec{F}(x, y, z)=\vec{\nabla} f(x, y, z)$ and let C be a smooth curve given by $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$ where $a \leq t \leq b$. Then

$$
\begin{align*}
\vec{\nabla} f(r(\vec{t})) \cdot \vec{r}^{\prime}(t) & =\left(\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j}+\frac{\partial f}{\partial z} \hat{k}\right) \cdot\left(\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k}\right) \tag{167}\\
& =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \tag{168}\\
& =\frac{d f}{d t} \tag{169}
\end{align*}
$$

Therefore, the line integral becomes

$$
\begin{equation*}
\int_{a}^{b} \vec{\nabla} f(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) \mathrm{d} t=\int_{a}^{b} \frac{d}{d t}(f(\vec{r}(t))) \mathrm{d} t=f(\vec{r}(b))-f(\vec{r}(a)) \tag{170}
\end{equation*}
$$

Theorem: The fundamental theorem of line integrals tells us that

$$
\begin{equation*}
\int_{C} \vec{\nabla} f \cdot \mathrm{~d} \vec{r}=f(\vec{r}(b))-f(\vec{r}(a)) \tag{171}
\end{equation*}
$$

- The reverse is also true. If $\oint_{C} \vec{F} \cdot \mathrm{~d} r=0$ for every piecewise smooth closed curve C over a domain D, then $\int_{C_{1}} \vec{F} \cdot \mathrm{~d} \vec{r}$ is path independent for any piecewise smooth path C_{1} in D :

$$
\begin{equation*}
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=0 \Longrightarrow \int_{C_{1}} \vec{F} \cdot \vec{r}+\int_{C_{2}} \vec{F} \cdot \mathrm{~d} \vec{r}=0 \tag{172}
\end{equation*}
$$

where $C=C_{1} \cup C_{2}$.
Theorem: Given a vector field \vec{F}, if $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ is path independent for every piecewise smooth curve C in the domain of \vec{F}, then \vec{F} is a conservative vector field and therefore there exists a scalar function f such that $\vec{\nabla} f=\vec{F}$.

- If one of the following is true, then the other two are also true:
$-\vec{F}$ is conservative $(\vec{F}=\vec{\nabla} F)$
$-\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=0$ for every piecewise smooth closed curve.
$-\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ is path independent for all piecewise smooth C between any two fixed points.
- Suppose we have $\vec{F}(x, y)=P(x, y) \hat{i}+Q(x, y) \hat{j}$. We know \vec{F} is conservative if and only if

$$
\begin{align*}
\vec{F} & =\vec{\nabla} f \tag{173}\\
P \hat{i}+Q \hat{j} & =\frac{\partial f}{\partial x} \hat{i}+\frac{\partial f}{\partial y} \hat{j} \tag{174}
\end{align*}
$$

This gives $P=\frac{\partial f}{\partial x}$ and $Q=\frac{\partial f}{\partial y}$. Note that

$$
\begin{equation*}
\frac{\partial P}{\partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial Q}{\partial x} \tag{175}
\end{equation*}
$$

This leads to our next theorem:
Theorem: If $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$, then $\vec{F}=\vec{\nabla} f$.

- We introduce some terminology to prelude Green's Theorem

Definition: A simple curve is a curve that does not intersect itself, except at its endpoints.

Definition: A curve has positive orientation if it traverses counterclockwise, and negative if you traverse it clockwise.

Definition: Let C be a positively oriented, piecewise-smooth simple closed curve in the plane and let R be the region bounded by C. IF $P(x, y)$ and $Q(x, y)$ are continuous and have continuous first partial derivatives throughout the region R, then

$$
\begin{equation*}
\oint_{C} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y \tag{176}
\end{equation*}
$$

Example 16: Let's verify Green's Theorem for the integral $\oint_{C} y \mathrm{~d} x-x \mathrm{~d} y$ where C is the curve $C: x^{2}+y^{2}+1$ traversed counterclockwise.
Method 1: Let us first check if $\vec{F}=y \hat{i}-x \hat{j}$ is conservative. However, $P_{y}=1$ and $Q_{x}=-1$ so it is not conservative.
Method 2: We have $\vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}$ and

$$
\begin{equation*}
\oint \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{t=0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) \mathrm{d} t=\int_{0}^{2 \pi}(\sin t \hat{i}-\cos t \hat{j}) \cdot(-\sin t \hat{i}+\cos t \hat{j}) \mathrm{d} t=-2 \pi \tag{177}
\end{equation*}
$$

Method 3: Using Green's Theorem, we have

$$
\begin{equation*}
\oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{R}\left(Q_{x}-P_{y}\right) \mathrm{d} A=\iint_{R}(-1-1) \mathrm{d} A=-2 \iint_{R} \mathrm{~d} A=-2\left(\pi \cdot 1^{2}\right) \tag{178}
\end{equation*}
$$

Warning: Green's Theorem is only true for curves with positive orientations. If the curve has a negative orientation, then we need to include a factor of -1 .

- Curves can be parametrized by a single parameter. Similarly, surfaces can be parametrized by two parameters:

$$
\begin{equation*}
\vec{r}(u, v)=x(u, v) \hat{i}+y(u, v) \hat{j}+z(u, v) \hat{k} \tag{179}
\end{equation*}
$$

- The easiest way to parametrize a surface $S: z=f(x, y)$ is to let $x=u, y=v, z=f(u, v)$ to get

$$
\begin{equation*}
\vec{r}(u, v)=u \hat{i}+v \hat{j}+f(u, v) \hat{k} \tag{180}
\end{equation*}
$$

Example 17: We can parametrize an upper hemisphere given by the equation $x^{2}+y^{2}+z^{2}=a^{2}$. We get

$$
\begin{equation*}
\vec{r}(u, v)=u \hat{i}+v \hat{j}+\sqrt{a^{2}-u^{2}-v^{2}} \hat{k} \tag{181}
\end{equation*}
$$

Similarly in spherical coordinates, we can parametrize it as $\rho=a, 0 \leq \theta \leq 2 \pi$, and $0 \leq \phi \leq \pi / 2$.

- Tangent Planes: Let S be a surface parametrized by the differentiable vector function $\vec{r}=\vec{r}(u, v)=x(u, v) \hat{i}+y(u, v) \hat{j}+$ $z(u, v) \hat{k}$ where $(u, v) \in D$. Then:

$$
\begin{align*}
& \vec{r}_{v}\left(u_{0}, v_{0}\right)=\left.\frac{\partial \vec{r}(u, v)}{\partial v}\right|_{\left(u_{0}, v_{0}\right)} \tag{182}\\
& \vec{r}_{u}\left(u_{0}, v_{0}\right)=\left.\frac{\partial \vec{r}(u, v)}{\partial u}\right|_{\left(u_{0}, v_{0}\right)} \tag{183}
\end{align*}
$$

are the tangent vector to $C_{1}=\vec{r}\left(u_{0}, v\right)$ and $C_{2}=\vec{r}\left(u, v_{0}\right)$, respectively.
Definition: For every point on a surface S, if $\vec{r}_{u} \times \vec{r}_{v} \neq \overrightarrow{0}$, then such a surface is called a smooth surface. Then $\vec{r}_{u}\left(u_{0}, v_{0}\right) \times \vec{r}_{v}\left(u_{0}, v_{0}\right)$ is perpendicular to the surface at point P.

Theorem: The surface area is given by

$$
\begin{equation*}
S=\iint_{D}\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| \mathrm{d} u \mathrm{~d} v \tag{184}
\end{equation*}
$$

[^0]: ${ }^{1}$ This is the common convention in physics. However, many mathematics texts mix up θ and ϕ

