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1 DOUBLE INTEGRALS

1 Double Integrals
• Integrals Involving a Parameter

Example 1: Let
∫ 1

0
Cx3 dx where C is a constant. Then it gives

∫ 1

0
Cx3 dx = 1

4C (1)

The result contains C.

• Suppose we have something like ∫ b

a

f(x, y) dx = g(y) (2)

and therefore y is a parameter

Definition: A variable which is kept constant during an integration is called a parameter.

• Partial integration wrt x

Example 2: An example of partial integration wrt x is∫ 1

0
x3y dx = y

∫ 1

0
x3 dx = 1

4y (3)

• Notice the similarity between partial differentiation wrt x, fx(x, y) and the partial integration wrt x,
∫ b

a

f(x, y) dx.

• Iterated Integrals (Integral of an Integral)

• Consider x = f(x, y) where x ∈ [a, b], y ∈ [c, d]. This defines a rectangular region.

• Assume that f(x, y) ≥ 0. This can be represented as a surface, as shown below:
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f(x, y)

If we take the integral
∫ d

y=c
f(x, y) dy = A(x), we see that the area of the slice depends on x.

If we suppose that the surface has a tiny thickness ∆x, then the volume is

∆V (x) = A(x) ·∆x =
(∫ d

y=c
f(x, y) dy

)
∆x (4)
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1 DOUBLE INTEGRALS

If we break up the interval [a, b] into N segments

x0 = a ≤ x1 ≤ x2 ≤ . . . xi−1 ≤ xi ≤ · · · ≤ xN−1 ≤ xN = b (5)

with ∆xi = xi − xi−1. We can then approximate the volume as

V ≈
N∑
i=1

∆Vi =
N∑
i=1

A(xi)∆xi (6)

which is known as a Riemann sum.

Idea: As we take the limit as N →∞ which implies ∆xi → 0, we get the double integral:

V =
∫ b

a

∫ d

c

f(x, y) dy dx (7)

which can be determined by calculating two integrals.

• Similarly, we can find the volume by taking slices parallel to the xz plane.

The area of each slice is a function of y:

A(y) =
∫ b

a

f(x, y) dx (8)

so we have ∆V (y) = A(y) ·∆y. Again, summing up all slices and taking the limit, we get

V =
∫ d

c

A(y) dy =
∫ d

c

f(x, y) dx dy (9)

Theorem: Fubini’s Theorem tells us that∫ b

a

∫ d

c

f(x, y) dy dx =
∫ d

c

∫ b

a

f(x, y) dx dy (10)

The analog for equality of mixed partial derivatives is known as Clairut’s Theorem.

Example 3: Find the volume under the surface z = x2y where x ∈ [1, 3] and y ∈ [0, 1]. We first form the integral
by integrating wrt y. We have

V =
∫ 3

1

∫ 1

0
x2y dy dx (11)

=
∫ 3

1
x2(12/2− 02/2) dx (12)

=
∫ 3

1

x2

2 dx (13)

= 13
3 (14)

We can also form the integral by integrate it wrt x:

V =
∫ 1

0

∫ 3

1
x2y dxdy (15)

=
∫ 1

0

26
3 y dy (16)

= 13
3 (17)

so we can confirm they give the same answer.
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1 DOUBLE INTEGRALS

Example 4: Evaluate the double integral of f(x, y) = x− 3y2 over region R where

R = {(x, y)|0 ≤ x ≤ 2, 1 ≤ y ≤ 2} (18)

To do this, we have ∫ 2

0

∫ 2

1
(x− 3y2) dy dx =

∫ 2

0
(xy − y3)

∣∣y=2
y=1 dx (19)

=
∫ 2

0
(x− 7) dx (20)

= −12 (21)

• Note that in the special case where the function f(x, y) is f(x, y) = g(x) · h(y), then∫ d

c

∫ b

a

f(x, y) dxdy =
∫ d

c

[
h(y)

∫ b

a

g(x) dx
]

dy =
∫ b

a

g(x) dx ·
∫ d

c

h(y) dy (22)

This gives us a shortcut of evaluating double integrals in this form.

• Double integrals over general regions (What if region is non-rectangular?)

• Type 1 Region is in the form of
R = {(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)} (23)

Here are some examples
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• Let’s think about the case where f(x, y) ≥ 0 on a type-1 region. Suppose we have the following illustration
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1 DOUBLE INTEGRALS
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Setup for Type 1

f(x, y)

We find the area of slices, so

A(x) =
∫ g2(x)

g1(x)
f(x, y) dy (24)

and the volume is thus

V =
∫ b

a

A(x) dX =
∫ b

a

∫ g2(X)

g1(x)
f(x, y) dy dx (25)

• Type-2 regions have the form
R = {(x, y)|c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y)} (26)

In a similar way, the volume bounded by this region is

V =
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy (27)

• Type-3 regions are neither type-1 nor type-2. It is possible to break up the region into parts that can be classified as
either type-1 or type-2:
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Idea: While these formulas are derived by assuming a positive volume (and thus cannot work if f < 0), they still
work in general.
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1 DOUBLE INTEGRALS

Example 5: Find the volume of the solid that lies under the surface

z = f(x, y) = x2 + y2 (28)

and above the region R in the xy-plane. The region R is bounded by the straight line y = 2x and the parabola
y = x2.

1. First we draw a diagram of the planar region R over which the surface is defined.
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2. We then draw a line parallel to the axis of first integration (i.e. vertical lines for integrating in the y-direction
first)

3. This gives us

V =
∫ x=2

x=0

∫ y=2x

y=x2
f(x, y) dy dx (29)

=
∫ 2

0

∫ 2x

x2
(x2 + y2) dy dx (30)

= 216
35 (31)

Alternatively, we can find the volume by integrating in the x direction first. In this case, we need to obtain
boundary curves in the x = x(y) form:

y = x2 =⇒ x = √y (32)
y = 2x =⇒ x = y/2 (33)

This then gives us

V =
∫ y=4

y=0

∫ x=√y

x=y/2
f(x, y) dxdy (34)

= 216
35 (35)

Warning: Do not just pick the minimum and maximum points. For example, the following is incorrect∫ y=4

y=0

∫ x=2

x=0
f(x, y) dx dy (36)

as that corresponds with a rectangular region.
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2 FORMAL DEFINITION OF DOUBLE INTEGRALS

Example 6: Integrate the surface given by z = ex
2
over the following region:

We can first integrate wrt x

V =∈y=1
y=0

∫ x=1

x=y
ex

2
dx dy (37)

This is a hard problem since we don’t know the anti-derivative of ex
2
. To solve this, we can first integrate wrt y,

which gives us

V =
∫ x=1

x=0

∫ y=x

y=0
ex

2
dy dx =

∫ 1

x=0
ex

2
y
∣∣y=x
y=0 dx (38)

=
∫ 1

0
ex

2
xdx (39)

This integral can be more easily solved using the u-sub u = x2, du = 2xdx to get

V = 1
2(e− 1) (40)

2 Formal Definition of Double Integrals
• We will see two ways of defining double integrals.

• First, let us review the formal definition of definite integrals for functions of a single variable.

To determine the area under a curve in the region x ∈ [a, b], we can break the region up into intervals ∆xi, so the
Riemann sum is

A ≈
n∑
i=1

f(x∗i )∆xi (41)

Let mi ≤ f(x∗i ) ≤Mi for x∗i ∈ ∆xi. Then:
n∑
i=1

mi∆xi ≤
n∑
i=1

f(x∗i )∆xi︸ ︷︷ ︸
Estimate of the entire area calculated by Riemann Sum

≤
n∑
i=1

Mi∆xi (42)

If the ∆xi are of equal length and we take the limit, we can define:

A = lim
n→∞

n∑
i=1

f(x∗i )∆xi =
∫ b

a

f(x) dx (43)

If they are not of equal length, we need to define the norm of the partition ‖P‖ = (∆xi)max for i = 1, 2, . . . , n. This
way, the integral can be alternatively defined as

A = lim
‖P‖→0

n∑
i=1

f(x∗i )∆xi =
∫ b

a

f(x) dx (44)

• Consider a double integral over rectangular region. Let z = f(x, y) be defined on R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}.
Assume f(x, y) ≥ 0 over R.

• Formal Definition 1: We can approximate the volume as

∆vi ≈ f(x∗i , y∗i )∆Ai (45)

where ∆Ai = ∆xi ·∆yi. The Riemann sum is then

V ≈
N∑
i=1

f(x∗i , y∗i )∆Ai (46)
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2 FORMAL DEFINITION OF DOUBLE INTEGRALS

We can pick x∗i , y∗i such that f(x∗i , y∗i ) is the smallest and largest value in the region, we can bound the Riemann sum
by:

N∑
i=1

mi∆xi∆yi ≤
N∑
i=1

f(x∗i , y∗i )∆xi∆yi ≤
N∑
i=1

Mi∆xi∆yi (47)

Warning: Taking the limit where N →∞ is not sufficient, as it does not necessarily mean the size of all partitions
approach zero.

We define the norm of the partition to be
‖P‖ = max(∆di) (48)

for i = 1, 2, . . . , N . Therefore:

V = lim
‖P‖→0

N∑
i=1

f(x∗i , y∗i )∆Ai =
∫∫
R

f(x, y) dA =
∫∫
R

f(x, y) dxdy . (49)

Idea: Functions that are continuous are integrable over that region.

• Formal Definition 2: We are free to divide the region R into any tiling, we can use uniform divisions.

As a result, the area of each tile is
∆Aij = ∆xi∆yj (50)

where the (i, j) represent the coordinate of the tile. The double Riemann sum is then:

V ≈
m∑
j=1

n∑
i=1

f(x∗ij , y∗ij)∆xi∆yj (51)

Again, we can define mij and Mij such that
m∑
j=1

n∑
i=1

mij∆xi∆yj ≤
m∑
j=1

n∑
i=1

f(x∗ij , y∗ij)∆xi∆yj ≤
m∑
j=1

n∑
i=1

Mij∆xi∆yj (52)

Since these intervals are equally partitioned, we can define

V = lim
m,n→∞

m∑
j=1

n∑
i=1

f(x∗ij , y∗ij)∆Aij =
∫∫
R

f(x, y) dA . (53)

If they were not, we would have to define the norm again.

Example 7: Estimate the volume of the solid that lies above the square R = [0, 2]× [0, 2] and below the elliptic
paraboloid z = 16−x2−2y2. Divide R into four equal squares & choose the sample point to be the upper corner
of each square.

We would then have:

V ≈
2∑
i=1

2∑
j=1

f(x∗ij , y∗ij)∆A (54)

≈ f(1, 1)∆A+ f(1, 2)∆A+ f(2, 1)∆A+ f(2, 2)∆A (55)
≈ 34 (56)

Note that the actual answer is 48. The approximation will improve as the number of regions increase.

• We can also define double integrals over non-rectangular regions.

• Definition 1: We can again tile a region using rectangular regions in two ways:

– Each tile is contained within R and there are some space.
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3 DOUBLE INTEGRALS IN POLAR COORDINATES

– Some tiles extend past the boundary of R, which is completely covered.

When we take the limit as ‖P‖ → 0, both of these tiling methods will approach the actual area, so using any of these
tilings will cause the double integral to approach the actual volume.

If f(x, y) is a continuous function over R, then

V = lim
‖P‖

∑
f(x∗i , y∗i )∆Ai = lim

‖P‖→0

N∑
j=1

f(x∗j , y∗j )∆Aj =
∫∫
R

f(x, y) dxdy (57)

• Definition 2: Similarly, we can use uniform partitions that either leave gaps or extend past the region. We can again
define mij and Mij for each tile Rij such that

V =
∫∫
R

f(x, y) dxdy = lim
‖P‖→0

M∑
j=1

N∑
i=1

f(x∗ij , y∗ij)∆xi∆yj (58)

3 Double Integrals in Polar Coordinates
• Using polar coordinates is helpful when integrating over circular regions.

• Recall that we can convert between rectangular and polar coordinates via

x = r cos θ, y = r sin θ (59)

and that the area of a sector is
A = 1

2r
2θ (60)

• Suppose we have some function f(x, y) defined on R = {(r, θ)|a ≤ r ≤ b, α ≤ θ ≤ β}. We can then define:

f(x, y) = f(r cos θ, r sin θ) = g(r, θ). (61)

Assume f(x, y) = g(r, θ) ≥ 0 on R. Then we can approximate the volume as

∆Vi ≈ g(r∗i , θ∗i ) ·∆Ai = f(r∗i cos θ∗i , r∗i sin θ∗i ) · ri∆ri∆θi
(

1 + ∆ri
2ri

)
. (62)

Taking the limit, we have

V = lim
‖P‖→0

n∑
i=1

f(r∗i cos θ∗i , r∗i sin θ∗i )ri∆ri∆θi (63)

∗ =
∫ β

α

∫ b

a

f(r cos θ, r sin θ)r dr dθ . (64)

We can generalize this finding regardless of whether the function is positive or negative over R.

Idea: In a region bounded by α ≤ θ ≤ β, a ≤ r ≤ b, we have∫∫
R

f(x, y) dA =
∫ β

α

∫ b

a

f(r cos θ, r sin θ)r dr dθ . (65)

• We can extend this to more complicated regions. Suppose R is bounded by α ≤ θ ≤ β and g(θ) ≤ r ≤ g2(θ). Then the
volume would be ∫∫

R

f(x, y) dA =
∫ β

α

∫ g2(θ)

g1(θ)
f(r cos θ, r sin θ)r dr dθ (66)

• Similarly, if R is bounded by a ≤ r ≤ b and h1(r) ≤ θ ≤ h2(r), we have∫∫
R

f(x, y) dA =
∫ b

a

∫ h2(r)

h1(r)
f(r cos θ, r sin θ)r dr dθ . (67)
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3 DOUBLE INTEGRALS IN POLAR COORDINATES

Example 8: Evaluate
∫∫
R

(3x + 4y2) dA where R is the region in the upper half-plane bounded by the circles

x2 + y2 = 1 and x2 + y2 = 4.

This leads to the region R = {(r, θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π}. Then:

I =
∫∫
R

(3x+ 4y2) dA (68)

=
∫ π

0

∫ 2

1
(3r cos θ + 4r2 sin2 θ)r dr dθ (69)

Solving this integral gives 15
2 π.

Example 9: Find the volume of the solid bounded by the z = 0 plane and the parabaloid z = 1− x2 − y2.

Note that at z = 0, we get 0 = 1− x2 − y2 =⇒ x2 + y2 = 1. We can write our region as R = {(r, θ)|0 ≤ r ≤
1, 0 ≤ θ ≤ 2π}. Our double integral is then

V =
∫∫
R

(1− x2 − y2) dA =
∫ 2π

0

∫ 1

0
(1− r2)r dr dθ (70)

Solving this gives V = π/2.

Example 10: Find the area enclosed by one petal of the rose given by r = cos 3θ.

x

y

The area is

A =
∫ π/6

−π/6

∫ cos 3θ

0
1 · r dr dθ (71)

which evaluates to 1
12 .

Example 11: Find the volume trapped between the cone z =
√
x2 + y2 and the sphere x2 + y2 + z2 = 1.

First, let us find the intersection using cartesian coordinates. We have√
x2 + y2 =

√
1− x2 − y2 =⇒ x2 + y2 = 1

2 . (72)
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4 SURFACE AREA AND TRIPLE INTEGRALS

This can be written as r = 1√
2
in polar coordinates. The volume is thus

∫ 2π

0

∫ 1/
√

2

0
f(x, y)r dr dθ (73)

where f(x, y) =
√

1− x2 − y2 −
√
x2 + y2. This gives 2π

3

(
1− 1√

2

)
.

• Applications of Double Integrals

• We can determine the mass of a plate with nonuniform density ρ = ρ(x, y). The mass is then∫∫
R

ρ(x, y) dA . (74)

• We can find the center of mass of a particle. Imagine we break a plate into small pieces. Each small piece has a moment
about the x axis:

(Mx)i = miy
∗
i ≈ ρ(x∗i , y∗i )∆Ai · y∗i (75)

The total x and y moments are thus

Mx =
∫∫
R

yρ(x, y) dA (76)

My =
∫∫
R

xρ(x, y) dA (77)

These are equal to the moment ȳm and x̄m, respectively, where m is the mass of the object. Thus:

x̄ =

∫∫
R

xρ(x, y) dA∫∫
R
ρ(x, y) dA

(78)

and similarly for ȳ.

• Consider a rotating object. A point mass has a kinetic energy K = 1
2mr

2ω2. However, mr2 would be different for
different points on a solid object.

We can consider:

K = 1
2

(
n∑
i=1

mir
2
i

)
ω2. (79)

The quantity inside the parentheses is known as the moment of inertia I. While this may be true for a series of point
masses, for a continuous distribution we need to take the limit:

I =
∫∫
R

ρ(x, y)[r(x, y)]2 dxdy . (80)

4 Surface Area and Triple Integrals
• Suppose we wish to find the surface area.

• Method 1: Given z = f(x, y) we can estimate the area as

S

∫∫
S

dT (81)

where dT gives the area of the tangent plane and S is the region of the curve. The projection of dT is given by

∆A = ∆T | cosα| =⇒ ∆A
| cosα| (82)
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4 SURFACE AREA AND TRIPLE INTEGRALS

where α is the angle between ~n (normal to plane) and ~k (normal to xy plane), such that

S =
∫∫
R

dA
| cosα| (83)

where R is the projection of S. To determine cosα, we can write z = f(x, y) in explicit form as

F (x, y, z) = z − f(x, y) = 0, (84)

which is the 0th level surface. Since ~∇ is perpendicular to it, we have

~n =
~∇F
‖~∇F‖

. (85)

Recall that
~∇F · ~k =

(
∂F

∂x
î+ ∂F

∂y
ĵ + ∂F

∂z
k̂

)
· ~k (86)

so

| cosα| = |~n · ~k| = |
~∇F · ~k|
‖~∇F‖

=
∣∣∂F
∂z

∣∣
‖~∇F‖

. (87)

Therefore, we have

S =
∫∫

R

√(
∂F
∂x

)2 +
(
∂F
∂y

)2
+
(
∂F
∂z

)2∣∣∂F
∂z

∣∣ dA (88)

which can be simplified to

S =
∫∫

R

√(
∂F

∂x

)2
+
(
∂F

∂y

)2
+ 1 dA (89)

• Method 2: Consider a rectangular subregion Ri with area ∆Ai = ∆yi ×∆xi. Projecting this onto z = f(x, y) gives a
parallelogram. This parallelogram has sides

~ai = ∆xi · î+ 0ĵ + fx(xi, yi)∆xik̂ (90)
~bi = 0̂i+ ∆yi · ĵ + fy(xi, yi)∆xik̂. (91)

The area of the parallelogram is ∆Ti = ‖~ai ×~bi‖. Taking the cross product, we get

S =
∫∫
R

√
f2
x(x, y) + f2

y (x, y) + 1 (92)

• All the ideas for double integrals carry over for triple Integrals. Formally, we can break it up into sub-volumes, gain an
estimate by finding the largest and smallest value in each ∆Vi, which bound the triple integral and approach to it after
taking the limit.

Example 12: Suppose f(x, y, z) is a continuous function defined on the box region Q, given by

Q = {(x, y, z)|a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s}. (93)

We then have ∫∫∫
Q

f(x, y, z) dV =
∫ s

r

∫ d

c

∫ b

a

f(x, y, z) dxdy dz . (94)

• Suppose we have something more complicated like Q = {(x, y, z)|(x, y) ∈ R and g1(x, y) ≤ z ≤ (x, y). We will then
have ∫∫

R

∫ g2(x,y)

g1(x,y)
f(x, y, z) dz dA (95)
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5 CYLINDRICAL, SPHERICAL COORDINATES, TAYLOR SERIES, JACOBIAN

Example 13: Evaluate
∫∫∫
Q

6xy dV where Q is the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and

2x+ y + z = 4. We then have ∫ x=2

x=0

∫ y=4−2x

y=0

∫ z=4−2x−y

z=0
6xy dz dy dx . (96)

If we want to first integrate with respect to x, we have∫ y=4

y=0

∫ z=4−y

z=0

∫ x=1/2(4−y−z)

x=0
(97)

5 Cylindrical, Spherical Coordinates, Taylor Series, Jacobian
• In cylindrical coordinates, we can represent a point in R3 as

P (x, y, z) = P (r, θ, z). (98)

We can describe a region as
Q = {(x, y, z)|(x, y) ∈ R, u1(x, y) ≤ z ≤ u2(x, y)} (99)

where
R = {(r, θ)|α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)} (100)

and the integral can be written as∫∫∫
Q

f(x, y, z) dV =
∫∫
R

[∫ u2(x,y)

u1(x,y)

]
dA (101)

=
∫ β

α

∫ h2(θ)

h1(θ)

∫ u2(r cos θ,r sin θ)

u1(r cos θ,r sin θ)
f(r cos θ, r sin θ, z)r dz dr dθ. (102)

• In spherical coordinates, a point can be represented by

P (x, y, z) = P (ρ, θ, φ) (103)

where θ is the same as the one in cylindrical coordinates1. We have

x = ρ sinφ cos θ (104)
y = ρ sinφ sin θ (105)
z = ρ cosφ (106)

and
ρ2 = x2 + y2 + z2. (107)

• The volume in spherical coordinates is given by

dV = ρ2 sinφdρdφdθ (108)

Idea: We can create a change of basis from î, ĵ, k̂ to eρ, eθ, and eφ as follows:

eρ = sinφ cos θî+ sinφ cos θĵ + cosφk̂ (109)
eθ = − sin θî+ cos θĵ + 0k̂ (110)
eφ = cosφ cos θî+ cosφ sin θĵ − sin θk̂ (111)

1This is the common convention in physics. However, many mathematics texts mix up θ and φ
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which can be represented in the following transformation:

[v]cartesian =

cos θ sinφ − sin θ cos θ cosφ
sin θ sinφ cos θ sin θ cosφ

cosφ 0 − sinφ

 [v]spherical (112)

That is, if you coordinates in the spherical basis, then you can use this transformation to get the coordi-
nates in the cartesian basis. This means that at a particular θ and φ, the unit vector eρ = (1, 0, 0) maps to
(cos θ sinφ, sin θ sinφ, cosφ), which is what we expect. Let this transformation matrix be M . Since M is com-
posed of only unit vectors, the inverse is the transpose:

[v]spherical =

cos θ sinφ sin θ sinφ cosφ
− sin θ cos θ 0

cos θ cosφ sin θ cosφ − sinφ

 [v]cartesian (113)

So any vector written in the cartesian basis can be written in terms of the spherical basis vectors via this transfor-
mation.

• Taylor Series for Two-Variable Functions: Suppose we are given f(x0, y0) and want to approximate f(x0 + ∆x, y0 +
∆y). Suppose there projections on the xy plane is P and Q. We can parametrize the line segment PQ as

x(t) = x0 + t∆x (114)
y(t) = y0 + t∆y (115)

where 0 ≤ t ≤ 1. We can then define
F (t) = f(x0 + t∆x, y0 + t∆y) (116)

which is a one-variable function, which we can approximate using the one dimensional Taylor Series:

F ′(t) = ∂f

∂x
∆x+ ∂f

∂y
∆y (117)

The second derivative is
F ′′(t) = ∂2f

∂x2 ∆x2 + 2 ∂2f

∂x∂y
∆x∆y + ∂2f

∂y2 ∆y2 (118)

The third derivative is

F ′′′(t) = ∂3f

∂x3 ∆x3 + 3 ∂3f

∂x2∂y
∆x2∆y + 3 ∂3f

∂x∂y2 ∆x∆y2 + ∂3f

∂y3 ∆y3. (119)

Therefore:
F (t0 + ∆t) ≈ F (t0) + F ′(t0)∆t+ 1

2!F
′′(t0)∆t2 + · · ·+ F (n)(t0)∆t

n! (120)

• Change of Variables in Multiple Integrals: Consider a bijective mapping between a region S in the uv plane to a
region R in the xy plane. We can partition both regions into N regions.

Specifically, let us partition S into square regions. Consider an arbitrary region with vertices Ā(u0, v0), B̄(u0 + ∆u, v0),
C̄(u0, v0 + ∆v), and D̄. Let the subregion be denoted as Si with area ∆AS .

Suppose we have the mapping

x = g(u, v) (121)
y = h(u, v) (122)

such that X̄ 7→ X. If ∆u and ∆v are sufficiently small, then Ri = ABCD is a parallelogram. Therefore:

∆AR ≈ area of the parallelogram = ‖ ~AB × ~AC‖. (123)

Note that ~AB = ∆x1î+ ∆y1ĵ and ~AC = ∆x2î+ ∆y2ĵ, so their cross product is

‖ ~AB × ~AC‖ = |∆x1∆y2 −∆x2∆y1| (124)

14
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From our linear approximation, we can write

∆x1 ≈ gu(u0, v0)∆u (125)
∆x2 ≈ gv(u0, v0)∆v (126)
∆y1 ≈ hu(u0, v0)∆u (127)
∆y2 ≈ hv(u0, v0)∆v (128)

To sum it up, we have

∆AR =
∣∣∣∣det

[
gu(u0, v0) gv(u0, v0)
hu(u0, v0) hv(u0, v0)

]∣∣∣∣∆u∆v (129)

Definition: The determinant of the derivative matrix is called the Jacobian (J) of the transformation.

J = det
[
gu gv
hu hv

]
= det

[
xu xv
yu yv

]
≡ ∂(x, y)
∂(u, v) (130)

given

x = g(u, v) (131)
y = h(u, v) (132)

Therefore,
∆AR ≈ |J |∆AS (133)

Theorem: Assuming that
– f is continuous
– g and h are functions that have continuous first derivatives
– The transformation is 1− 1.
– The Jacobian J is nonzero

we can write ∫∫
R

f(x, y) dA =
∫∫

S

f(g(u, v), h(u, v))
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣dudv . (134)

Note the similarity between this and the single variable case∫ b

a

f(x) dx =
∫ d

c

f(x(u))dx
du du (135)

Example 14: Suppose we wish to evaluate the integral
∫∫
R

(x2 + 2xy) dA where R is the region bounded by the

lines

y = 2x+ 3 (136)
y = 2x+ 1 (137)
y = 5− x (138)
y = 2− x (139)

Notice that this is a rotated rectangle, so let’s try to switch this into a non-rotated rectangle with the bounds:

u = 3 (140)
u = 1 (141)
v = 5 (142)
v = 2 (143)
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6 LINE INTEGRALS, FUNDAMENTAL THEOREM, GREEN’S THEOREM, AND PARAMETRIC SURFACES

by the transformation

x = 1
3(v − u) (144)

y = 1
3(2v + u). (145)

The Jacobian is

J = det

∂x∂u ∂x

∂v
∂y

∂u

∂y

∂v

 = det
[
−1/3 1/3
1/3 2/3

]
= −1

3 (146)

which gives ∫∫
R

(x2 + 2xy) dA =
∫∫

S

[
1
3(v − u)2 + 2

3(v − u)(2v + u)
]
|J |dudv (147)

where S = {(u, v)|1 ≤ u ≤ 3, 2 ≤ v ≤ 5}

• For triple integrals, the Jacobian is

∂(x, y, z)
∂(u, v, w) = det


∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

 (148)

• Successive Transformations: Suppose we have x = x(u, v), y = y(u, v) and u = u(s, t) and v = v(s, t). Then

∂(x, y)
∂(s, t) = ∂(x, y)

∂(u, v) ·
∂(u, v)
∂(s, t) (149)

• Back Transformations: Recall that when we transform a region R to a region S with some transformation T , then

dAR =
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ dAS (150)

and
dAS =

∣∣∣∣∂(u, v)
∂(x, y)

∣∣∣∣dAR (151)

Theorem: Jacobians satisfy the property:

∂(x, y)
∂(u, v) =

(
∂(u, v)
∂(x, y)

)−1
(152)

or
JS→R = 1

JR→S
(153)

Idea: This is important since if we know u = f(x, y) and v = g(x, y), then we can calculate the Jacobian without
finding the inverse.

6 Line Integrals, Fundamental Theorem, Green’s Theorem, and Parametric Sur-
faces
• Suppose we have a line in R3 and we wish to evaluate a function along this line.

• We can break this line into segments ∆si and sum up

f(x∗i , y∗i )∆si (154)

16



6 LINE INTEGRALS, FUNDAMENTAL THEOREM, GREEN’S THEOREM, AND PARAMETRIC SURFACES

Taking the limit, we get ∫
C

f(x, y) ds (155)

• Taking f(x, y) = 1 gives the length of the line segment C.

• We need to assume that

– f is continuous

– C is smooth (~r(t) is continuous and ~r′(t) 6= 0 except at endpoints)

and have the curve be parametrized
~r(t) = x(t)̂i+ y(t)ĵ (156)

so we can write
ds =

√
x′(t)2 + y′(t)2 dt . (157)

Example 15: Suppose we wish to find the center of mass of a semi-circular length of wire. The length density is
to be taken as constant. Note that x̄ = 0 by symmetry. The moment about the x axis is then:

mȳ =
∫
C

yρds . (158)

We can parametrize ~r(t) = a cos t̂i+ a sin tĵ and ds = a dt . Therefore:

ȳ = 1
m

∫
C

yρds = 1
m

∫ π

0
a sin tρa dt = 2a

π
. (159)

• In the special case where C is parallel to the x axis, then we can reduce it to the familiar single-variable integral.

• Three-Dimensions: We can easily extend it to three dimensions:∫
C

f(x, y, z) ds =
∫ b

a

f(~r(t)) · ‖~r′(t)‖ dt (160)

• For a piecewise smooth curve, we need to break up the line integral into several smaller ones.

Idea: Let f(x, y) be a scalar. Then
∫
C

f(x, y) ds =
∫
−C

f(x, y) ds. This is because ds is always positive.

• Suppose we have a vector field

~F (x, y, z) = P (x, y, z)̂i+Q(x, y, z)ĵ +R(x, y, z)k̂ = ~F (~r) (161)

• The work done along a curve C is given by∫
C

~F (x, y, z) · ~T (x, y, z) ds =
∫ b

a

~F (~r(t)) · ~r′(t) dt =
∫
C

~F · ~r (162)

• NOte that if we have ~r(t) = x(t)̂i+ y(t)ĵ + z(t)k̂ where a ≤ t ≤ b, then

d~r(t)
dt

= dx

dt
î+ dy

dt
ĵ + dz

dt
k̂ (163)
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so ∫
C

~F · d~r = ~F (~r(t)) · ~r′(t) dt (164)

=
∫ b

a

(P î+Qĵ +Rk̂) ·
(
dx

dt
î+ dy

dt
ĵ + dz

dt
k̂

)
dt (165)

=
∫
C

P dx+
∫
C

Qdy +
∫
C

R dz (166)

Definition: A vector field ~F is called a conservative vector field if it is the gradient of some scalar function ~∇f. In
this situation, the scalar function is called a potential function of ~F .

• Suppose that ~F (x, y, z) = ~∇f(x, y, z) and let C be a smooth curve given by ~r(t) = x(t)̂i+y(t)ĵ+z(t)k̂ where a ≤ t ≤ b.
Then

~∇f( ~r(t)) · ~r′(t) =
(
∂f

∂x
î+ ∂f

∂y
ĵ + ∂f

∂z
k̂

)
·
(
dx

dt
î+ dy

dt
ĵ + dz

dt
k̂

)
(167)

= ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt
+ ∂f

∂z

dz

dt
(168)

= df

dt
. (169)

Therefore, the line integral becomes∫ b

a

~∇f(~r(t)) · ~r′(t) dt =
∫ b

a

d

dt
(f(~r(t))) dt = f(~r(b))− f(~r(a)) (170)

Theorem: The fundamental theorem of line integrals tells us that∫
C

~∇f · d~r = f(~r(b))− f(~r(a)) (171)

• The reverse is also true. If
∮
C

~F · dr = 0 for every piecewise smooth closed curve C over a domain D, then
∫
C1

~F · d~r is

path independent for any piecewise smooth path C1 in D:∮
C

~F · d~r = 0 =⇒
∫
C1

~F · ~r +
∫
C2

~F · d~r = 0 (172)

where C = C1 ∪ C2.

Theorem: Given a vector field ~F , if
∫
C

~F ·d~r is path independent for every piecewise smooth curve C in the domain

of ~F , then ~F is a conservative vector field and therefore there exists a scalar function f such that ~∇f = ~F .

• If one of the following is true, then the other two are also true:

– ~F is conservative (~F = ~∇F )

–
∮
C

~F · d~r = 0 for every piecewise smooth closed curve.

–
∫
C

~F · d~r is path independent for all piecewise smooth C between any two fixed points.
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• Suppose we have ~F (x, y) = P (x, y)̂i+Q(x, y)ĵ. We know ~F is conservative if and only if
~F = ~∇f (173)

P î+Qĵ = ∂f

∂x
î+ ∂f

∂y
ĵ (174)

This gives P = ∂f

∂x
and Q = ∂f

∂y
. Note that

∂P

∂y
= ∂2f

∂y∂x
= ∂2f

∂x∂y
= ∂Q

∂x.
(175)

This leads to our next theorem:

Theorem: If ∂P
∂y

= ∂Q

∂x
, then ~F = ~∇f .

• We introduce some terminology to prelude Green’s Theorem

Definition: A simple curve is a curve that does not intersect itself, except at its endpoints.

Definition: A curve has positive orientation if it traverses counterclockwise, and negative if you traverse it clockwise.

Definition: Let C be a positively oriented, piecewise-smooth simple closed curve in the plane and let R be the region
bounded by C. IF P (x, y) and Q(x, y) are continuous and have continuous first partial derivatives throughout the
region R, then ∮

C

P (x, y) dx+Q(x, y) dy =
∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy (176)

Example 16: Let’s verify Green’s Theorem for the integral
∮
C

y dx− xdy where C is the curve C : x2 + y2 + 1

traversed counterclockwise.

Method 1: Let us first check if ~F = yî − xĵ is conservative. However, Py = 1 and Qx = −1 so it is not
conservative.

Method 2: We have ~r(t) = cos t̂i+ sin tĵ and∮
~F · d~r =

∫ 2π

t=0
~F (~r(t)) · ~r′(t) dt =

∫ 2π

0
(sin t̂i− cos tĵ) · (− sin t̂i+ cos tĵ) dt = −2π (177)

Method 3: Using Green’s Theorem, we have∮
C

P dx+Qdy =
∫∫
R

(Qx − Py) dA =
∫∫
R

(−1− 1) dA = −2
∫∫
R

dA = −2(π · 12) (178)

Warning: Green’s Theorem is only true for curves with positive orientations. If the curve has a negative orientation,
then we need to include a factor of −1.

• Curves can be parametrized by a single parameter. Similarly, surfaces can be parametrized by two parameters:

~r(u, v) = x(u, v)̂i+ y(u, v)ĵ + z(u, v)k̂ (179)

• The easiest way to parametrize a surface S : z = f(x, y) is to let x = u, y = v, z = f(u, v) to get

~r(u, v) = uî+ vĵ + f(u, v)k̂ (180)

19



6 LINE INTEGRALS, FUNDAMENTAL THEOREM, GREEN’S THEOREM, AND PARAMETRIC SURFACES

Example 17: We can parametrize an upper hemisphere given by the equation x2 + y2 + z2 = a2. We get

~r(u, v) = uî+ vĵ +
√
a2 − u2 − v2k̂ (181)

Similarly in spherical coordinates, we can parametrize it as ρ = a, 0 ≤ θ ≤ 2π, and 0 ≤ φ ≤ π/2.

• Tangent Planes: Let S be a surface parametrized by the differentiable vector function ~r = ~r(u, v) = x(u, v)̂i+y(u, v)ĵ+
z(u, v)k̂ where (u, v) ∈ D. Then:

~rv(u0, v0) = ∂~r(u, v)
∂v

∣∣∣∣
(u0,v0)

(182)

~ru(u0, v0) = ∂~r(u, v)
∂u

∣∣∣∣
(u0,v0)

(183)

are the tangent vector to C1 = ~r(u0, v) and C2 = ~r(u, v0), respectively.

Definition: For every point on a surface S, if ~ru × ~rv 6= ~0, then such a surface is called a smooth surface. Then
~ru(u0, v0)× ~rv(u0, v0) is perpendicular to the surface at point P .

Theorem: The surface area is given by
S =

∫∫
D

‖~ru × ~rv‖ dudv (184)
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