AER210: Vector Calc
 Midterm Review

QiLin Xue

Fall 2021

Disclaimer: I am skipping over a lot of the formalities. A lot of the theorems cited rely on certain conditions (i.e. continuity, differentiable). However, they should all work on "nice" looking functions, so I left them out.

1 Multiple Integrals

Multiple integrals are used when integrating over regions or volumes. Just like Clairut's Theorem, we can swap the order:

$$
\begin{equation*}
\int_{a}^{b} \int_{c}^{d} f(x, y) \mathrm{d} y \mathrm{~d} x=\int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d} x \mathrm{~d} y \tag{1}
\end{equation*}
$$

This is not the case for general regions. In general (if we look at 3D case), we can write

$$
\begin{equation*}
\iiint_{E} f(x, y, z) \mathrm{d} V=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) \mathrm{d} z \mathrm{~d} y \mathrm{~d} x \tag{2}
\end{equation*}
$$

where the region E can be defined as

$$
\begin{equation*}
E=\left\{(x, y, z) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x), u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\} \tag{3}
\end{equation*}
$$

Other region types involve just permutations.

1.1 Coordinate Systems

Cylindrical Coordinates

We can convert from cylindrical to rectangular coordinates

$$
\begin{equation*}
x=r \cos \theta, y=r \sin \theta, z=z \tag{4}
\end{equation*}
$$

And triple integral is given by

$$
\begin{equation*}
\iiint f(x, y, z) r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta \tag{5}
\end{equation*}
$$

Spherical Coordinates

We can convert from spherical to rectangular coordinates (should be polar when $\phi=\pi / 2$)

$$
\begin{equation*}
x=\rho \cos \theta \sin \phi, y=\rho \sin \theta \sin \phi, z=\rho \cos \phi \tag{6}
\end{equation*}
$$

and the integral is given by

$$
\begin{equation*}
\iiint f(x, y, z) \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi \tag{7}
\end{equation*}
$$

1.2 Change of Basis

In 1D calculus, we performed u-substitutions as follows. If $x=f(u)$. Then $\mathrm{d} x=f^{\prime}(u) \mathrm{d} u$ and

$$
\begin{equation*}
\int_{u(a)}^{u(b)} f(x(u))\left(f^{\prime}(u) \mathrm{d} u\right) \tag{8}
\end{equation*}
$$

The same formula applies in multiple dimensions if we treat x and u as vectors, such that $f^{\prime}(x)$ is the determinant of a matrix of partial derivatives, known as the Jacobian, where given $x=g(u, v)$ and $y=h(u, v)$, we have:

$$
J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \tag{9}\\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]
$$

and thus

$$
\begin{equation*}
\iiint_{R} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{E} f(x, y, z) J \mathrm{~d} u \mathrm{~d} v \mathrm{~d} w \tag{10}
\end{equation*}
$$

where S is the same region as R but written in terms of u, v, w.

1.3 Surface Area

The surface area of a region D is given by

$$
\begin{equation*}
A=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} \mathrm{~d} A \tag{11}
\end{equation*}
$$

2 Div Grad Curl and All That

2.1 Line Integral

Suppose we define a line using the parametric equations $x(t), y(t)$ and there is a function f that acts on this line C, then:

$$
\begin{equation*}
\int_{C} f(x, y) \mathrm{d} s=\int_{a}^{b} f(x(t), y(t)) \sqrt{x^{\prime 2}+y^{\prime 2}} \mathrm{~d} t \tag{12}
\end{equation*}
$$

Alternatively, we can write

$$
\begin{equation*}
\int_{C} f(x, y) \mathrm{d} x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) \mathrm{d} t \tag{13}
\end{equation*}
$$

The line integral of a vector field F that acts on a curve C is given by

$$
\begin{equation*}
\int_{C} F \cdot \mathrm{~d} r=\int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) \mathrm{d} t=\int_{C} F \cdot T \mathrm{~d} s \tag{14}
\end{equation*}
$$

where T is the unit tangent vector.

Fundamental

The fundamental theorem says that

$$
\begin{equation*}
\int_{C} \nabla f \cdot \mathrm{~d} r=f(r(b)-r(a)) \tag{15}
\end{equation*}
$$

Therefore, if we are given a line integral and the vector field can be written as the gradient of a function, then it is conservative and we can apply this theorem.
When is a vector field conservative? If $F(x, y)=(P(x, y), Q(x, y))$ is conservative, then

$$
\begin{equation*}
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \tag{16}
\end{equation*}
$$

and the converse holds for open simply-connected regions (i.e. no weird stuff happening). It is also conservative if $\nabla \times F=0$.

2.2 Green's Theorem

We have another shortcut to calculate closed line integrals:

$$
\begin{equation*}
\oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A \tag{17}
\end{equation*}
$$

Note that this is zero when the field is conservative. We can write Green's Theorem in vector form. Given $F=(P, Q)$ as before, we can write

$$
\begin{equation*}
\oint_{C} F \cdot \mathrm{~d} r=\iint_{D}(\nabla \times F) \cdot \hat{k} \mathrm{~d} A \tag{18}
\end{equation*}
$$

2.3 Divergence and Curl

Define the operator $\nabla=\left[\begin{array}{lll}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right]^{T}$ such that

$$
\begin{equation*}
\operatorname{div} F=\nabla \cdot F \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{curl} \mid F=\nabla \times F \tag{20}
\end{equation*}
$$

Note that div curl $\nabla \cdot(\nabla \times F)=0$ (we had a similar expression in linear algebra) and curl grad $F=0$ (a block placed on a mountainous hill will slide down without rotating)

3 Parametric Surfaces

We can represent a 1 D using a single parameter t. Similarly, we can represent a 2D surface using two parameters u, v. The overall idea is that we can define a surface as

$$
\begin{equation*}
r(u, v)=(x(u, v), y(u, v), z(u, v)) \tag{21}
\end{equation*}
$$

3.1 Surfaces of Revolution

We can parametrize a surface which was a result of revolution via:

$$
\begin{equation*}
x=x \quad y=f(x) \cos \theta \quad z=f(x) \sin \theta \tag{22}
\end{equation*}
$$

3.2 Tangent Planes

The unit vector r_{v}, which points in the direction we move in if we only vary the parameter v is given by

$$
\begin{equation*}
r_{v}=\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right) \tag{23}
\end{equation*}
$$

and similarly for r_{u}. The plane can then be represented by the normal vector

$$
\begin{equation*}
r_{u} \times r_{v} \tag{24}
\end{equation*}
$$

which should be nonzero for smooth surfaces.

3.3 Surface Area

The surface area is given by

$$
\begin{equation*}
A(S)=\iint_{D}\left|r_{u} \times r_{v}\right| \mathrm{d} A \tag{25}
\end{equation*}
$$

3.4 Surface Integrals

We can generalize the previous result to the general case (i.e. a function f acts on a region S):

$$
\begin{equation*}
\iint_{S} f(x, y, z) \mathrm{d} S=\iint_{D} f(r(u, v))\left|r_{u} \times r_{v}\right| \mathrm{d} A \tag{26}
\end{equation*}
$$

Note the similarity between this form and the similar form when we consider a function $z=g(x, y)$. We have

$$
\begin{equation*}
r_{x} \times r_{y}=\left(-\frac{\partial g}{\partial x},-\frac{\partial g}{\partial y}, 1\right) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|r_{x} \times r_{y}\right|=\sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} \tag{28}
\end{equation*}
$$

so we can easily convert between the two forms.

3.5 Oriented Surfaces

Similar to the above discussion, we can write the oriented normal surface in two ways:

$$
\begin{equation*}
n=\frac{r_{u} \times r_{v}}{\left|r_{u} \times r_{v}\right|}=\frac{-\frac{\partial g}{\partial x} \hat{i}-\frac{\partial g}{\partial y} \hat{j}+\hat{k}}{\sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1}} \tag{29}
\end{equation*}
$$

3.6 Surface Integrals of Vector Fields

The flux of \boldsymbol{F} across S is given by

$$
\begin{equation*}
\iint_{S} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{S}=\iint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \mathrm{~d} S=\iint_{D} \boldsymbol{F} \cdot\left(\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}\right) \mathrm{d} A \tag{30}
\end{equation*}
$$

4 Adolescent Level Calculus

4.1 Stoke's Theorem

If F is a vector field, then

$$
\begin{equation*}
\oint_{C} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{r}=\iint_{S}(\nabla \times \boldsymbol{F}) \cdot \mathrm{d} \boldsymbol{S} \tag{31}
\end{equation*}
$$

This is just a three-dimensional version of Green's Theorem.

4.2 Divergence Theorem

Stoke's Theorem tells us that the curl of a function \boldsymbol{F} on a surface \boldsymbol{S} can be represented by how \boldsymbol{F} interacts with the boundary of the surface.
Divergence Theorem tells us the same thing, but going from 3D to 2D:

$$
\begin{equation*}
\iint_{S} \boldsymbol{F} \cdot \mathrm{~d} \boldsymbol{S}=\iiint_{E} \nabla \cdot \boldsymbol{F} \mathrm{~d} V \tag{32}
\end{equation*}
$$

