
AER210: Vector Calc
Midterm Review

QiLin Xue

Fall 2021

Disclaimer: I am skipping over a lot of the formalities. A lot of the theorems cited rely on certain conditions (i.e. continuity,
differentiable). However, they should all work on “nice” looking functions, so I left them out.

1 Multiple Integrals
Multiple integrals are used when integrating over regions or volumes. Just like Clairut’s Theorem, we can swap the order:∫ b

a

∫ d

c

f(x, y) dy dx =
∫ d

c

∫ b

a

f(x, y) dxdy (1)

This is not the case for general regions. In general (if we look at 3D case), we can write∫∫∫
E

f(x, y, z) dV =
∫ b

a

∫ g2(x)

g1(x)

∫ u2(x,y)

u1(x,y)
f(x, y, z) dz dy dx (2)

where the region E can be defined as

E = {(x, y, z)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), u1(x, y) ≤ z ≤ u2(x, y)} . (3)

Other region types involve just permutations.

1.1 Coordinate Systems
Cylindrical Coordinates

We can convert from cylindrical to rectangular coordinates

x = r cos θ, y = r sin θ, z = z (4)

And triple integral is given by ∫∫∫
f(x, y, z)r dz dr dθ (5)

Spherical Coordinates

We can convert from spherical to rectangular coordinates (should be polar when φ = π/2)

x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ (6)

and the integral is given by ∫∫∫
f(x, y, z)ρ2 sinφdρdθ dφ (7)
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1.2 Change of Basis
In 1D calculus, we performed u-substitutions as follows. If x = f(u). Then dx = f ′(u) du and∫ u(b)

u(a)
f(x(u)) (f ′(u) du) (8)

The same formula applies in multiple dimensions if we treat x and u as vectors, such that f ′(x) is the determinant of a matrix
of partial derivatives, known as the Jacobian, where given x = g(u, v) and y = h(u, v), we have:

J = det

∂x∂u ∂x

∂v
∂y

∂u

∂y

∂v

 (9)

and thus ∫∫∫
R

f(x, y, z) dxdy dz =
∫∫∫

E

f(x, y, z)J dudv dw (10)

where S is the same region as R but written in terms of u, v, w.

1.3 Surface Area
The surface area of a region D is given by

A =
∫∫
D

√
1 +

(
∂z

∂x

)2
+
(
∂z

∂y

)2
dA (11)

2 Div Grad Curl and All That
2.1 Line Integral
Suppose we define a line using the parametric equations x(t), y(t) and there is a function f that acts on this line C, then:∫

C

f(x, y) ds =
∫ b

a

f(x(t), y(t))
√
x′2 + y′2 dt (12)

Alternatively, we can write ∫
C

f(x, y) dx =
∫ b

a

f(x(t), y(t))x′(t) dt (13)

The line integral of a vector field F that acts on a curve C is given by∫
C

F · dr =
∫ b

a

F (r(t)) · r′(t) dt =
∫

C

F · T ds (14)

where T is the unit tangent vector.

Fundamental

The fundamental theorem says that ∫
C

∇f · dr = f(r(b)− r(a)) (15)

Therefore, if we are given a line integral and the vector field can be written as the gradient of a function, then it is conservative
and we can apply this theorem.

When is a vector field conservative? If F (x, y) = (P (x, y), Q(x, y)) is conservative, then

∂P

∂y
= ∂Q

∂x
(16)

and the converse holds for open simply-connected regions (i.e. no weird stuff happening). It is also conservative if ∇× F = 0.
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2.2 Green’s Theorem
We have another shortcut to calculate closed line integrals:∮

C

P dx+Qdy =
∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA (17)

Note that this is zero when the field is conservative. We can write Green’s Theorem in vector form. Given F = (P,Q) as
before, we can write ∮

C

F · dr =
∫∫
D

(∇× F ) · k̂ dA (18)

2.3 Divergence and Curl

Define the operator ∇ =
[
∂

∂x

∂

∂y

∂

∂z

]T

such that

divF = ∇ · F (19)

and
curlF = ∇× F (20)

Note that div curl ∇ · (∇ × F ) = 0 (we had a similar expression in linear algebra) and curl gradF = 0 (a block placed on a
mountainous hill will slide down without rotating)

3 Parametric Surfaces
We can represent a 1D using a single parameter t. Similarly, we can represent a 2D surface using two parameters u, v. The
overall idea is that we can define a surface as

r(u, v) = (x(u, v), y(u, v), z(u, v)) (21)

3.1 Surfaces of Revolution
We can parametrize a surface which was a result of revolution via:

x = x y = f(x) cos θ z = f(x) sin θ (22)

3.2 Tangent Planes
The unit vector rv, which points in the direction we move in if we only vary the parameter v is given by

rv =
(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
(23)

and similarly for ru. The plane can then be represented by the normal vector

ru × rv (24)

which should be nonzero for smooth surfaces.

3.3 Surface Area
The surface area is given by

A(S) =
∫∫

D

|ru × rv|dA (25)
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3.4 Surface Integrals
We can generalize the previous result to the general case (i.e. a function f acts on a region S):∫∫

S

f(x, y, z) dS =
∫∫
D

f(r(u, v))|ru × rv|dA (26)

Note the similarity between this form and the similar form when we consider a function z = g(x, y). We have

rx × ry =
(
−∂g
∂x
,−∂g

∂y
, 1
)

(27)

and

|rx × ry| =

√(
∂z

∂x

)2
+
(
∂z

∂y

)2
+ 1 (28)

so we can easily convert between the two forms.

3.5 Oriented Surfaces
Similar to the above discussion, we can write the oriented normal surface in two ways:

n = ru × rv

|ru × rv|
=

− ∂g
∂x î−

∂g
∂y ĵ + k̂√(

∂z
∂x

)2 +
(

∂z
∂y

)2
+ 1

(29)

3.6 Surface Integrals of Vector Fields
The flux of F across S is given by ∫∫

S

F · dS =
∫∫
S

F · n dS =
∫∫
D

F · (ru × rv) dA (30)

4 Adolescent Level Calculus
4.1 Stoke’s Theorem
If F is a vector field, then ∮

C

F · dr =
∫∫
S

(∇× F ) · dS (31)

This is just a three-dimensional version of Green’s Theorem.

4.2 Divergence Theorem
Stoke’s Theorem tells us that the curl of a function F on a surface S can be represented by how F interacts with the boundary
of the surface.

Divergence Theorem tells us the same thing, but going from 3D to 2D:∫∫
S

F · dS =
∫∫∫

E

∇ · F dV (32)
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