AER372: Control Systems
Assignment 4

QiLin Xue
Spring 2023

4.1 Recall that a lead compensator is in the form of

_KTs+1

D(s) = aTs+1 (1)

for z < p. Our transfer function is
50000

Gls) = s(s+10)(s + 50)’ @)

and we wish to satisfy PM > 50° and wpw > 20 rad/sec. The Bode Plot is shown below for the original system with
no compensator,

Bode Magnitude Plot

80

60

40

20

Magnitude [dB]

-20

1072 1071 10° 10! 107
Frequency [rad/s]

Bode Phase Plot

Phase [degrees]

| | | | |
NN R R
N O N U N
u O wu o wu

1072 1071 100 10t 102
Frequency [rad/s]

which has the following parameters (see Appendix for computation)

wpw = 33.61 rad/s 3)
we = 28.74 rad/s (4)
PM = —10.70° (5)

(1) Note that K = 1/10 gives wo = 7.83 rad/s.
(2) From above, we have PM = —10.7°
(3) Set requirement to be PM > 50° 4+ 10° instead, so

PM =60° — (10.7°) = 70° = ¢max
(4) Compute

_ 1 —sin d)max

= =0.031
@ 1 + sin @max

(5) Pick wmax = 20 to get

1
Ty = = 0.283980917
\/awmax
)
() 0.28s + 1
§)= ————.
¢ 0.0088s + 1
This gives the following Bode Plot,
Bode Magnitude Plot
60
Iy 40
G,
[
3 20
s
(®)]
©
= o0
-20
1072 1071 100 10! 102
Frequency [rad/s]
Bode Phase Plot
-80
w —100
o
o —-120
[
S,
o —140
(%)
©
&£ -160
-180
1072 1071 100 10! 102

Frequency [rad/s]

which has parameters

wpw = 31.22 rad/s
we = 23.25 rad/s
PM = 68.04°

which satisfies the necessary conditions. The bandwidth is around

wpw =~ 1 rad/s.

(10)
(11)
(12)

4.2 A lag compensator is in the form
T]S +1
D.(s) = Ko———— 14
(5) = Kam (14)

1
for ae > 1. For unity DC gain, we want D.(0) = 1 so K = —. The frequency response for
a

G(s) 10 210 210 (15)
S) = = =
s(s/1.4+1)(s/3+1) s(s+3)(5bs+7) 5s3+ 2252+ 21s
looks like the following,
Bode Magnitude Plot
50
— 25
[an]
S
% 0
>
£ -25
()]
©
= -50
-75
1072 1071 10° 10t 102
Frequency [rad/s]
Bode Phase Plot
—100
é —-150
o
Z
Y —200
©
&£
-250
1072 1071 10° 10t 102
Frequency [rad/s]
which has parameters
wpw = 3.48 rad/s (16)
we = 3.00 rad/s 17)
PM = —20.02° (18)

To design our controller, we first assume that adding in the compensator will not significantly change the shape of the
phase plot. The frequency at which the phase margin is 45° (where we added 10° for safety) is wo = 0.81 rad/s. The
magnitude at this frequency is

My = 20 dB, (19)
so we need to determine «, T such that
|De(jwo)| = 10720/20 = 0.1, (20)
The magnitude at high frequencies approach
. . 1
so set @ = 10 and pick the corner frequency to be
1/Tr =0.81/10 = 0.081 rad/s (22)

so we know that at wg = 0.81 rad/s, we can guarantee that the magnitude is 0 dB. From the above equation, we get
T = 12.3 so we get our first estimate of

12.3s+1
D.(s) = ———. 23
() 1235+ 1 (23)
The new Bode Plot is shown below,
Bode Magnitude Plot
50
o
S 0
[
el
2
5 -50
s
-100
1072 1071 100 101 102
Frequency [rad/s]
Bode Phase Plot
—-125
_.—150
4
Y175
)
2 _200
2
2 -225
o
—-250
1072 1071 10° 101 102
Frequency [rad/s]
which has
PM = 38.61°, (24)

thus satisfying the necessary conditions.

4.3 We have

0.05(s + 25) s+ 25
()= S 0051 4) ~ 2057+ 257 + 8052 (25)
which has the following Bode Plot,
Bode Magnitude Plot
50
g
[
el
=}
£ -50
g
= _100
—150
1072 1071 100 101 102
Frequency [rad/s]
Bode Phase Plot
—200
o —250
()
S,
b
£ -300
o
—-350
102 1071 100 101! 102
Frequency [rad/s]
and has the following parameters
WBw = 0.71 rad/s (26)
we = 0.59 rad/s (27)
PM = 0.43° (28)
GM = 9.57. (29)

The condition for GM is already satisfied, but we want PM > 45°. Let us considder different compensations:

e Lag Compensator: We can increase the gain at low frequencies and decrease the gain at high frequencies. Therefore,
if we want to increase the phase margin, we are also decreasing the bandwidth!

e Pl Compensator: Similar to above, this is designed to keep the bandwidth low by increasing the gain at low frequencies
and decreasing the gain at high frequencies, except now the gain approaches infinity as the frequency approaches
zero.

e Lead Compensator: This does the opposite. It decreases the gain at low frequencies and increases the gain at high
frequencies. Therefore, if we want to increase the phase margin, we are also increasing the bandwidth! This is the
desired response.

Because not only do we want to increase PM but we also want to increase the bandwidth, we should use a lead
compensator. Note that other compensators such as lead-lag have more parameters than a lead compensator (which can
accomplish this task), so they are out of the question.

4.4 (a)

We first compute |G(jw.)|, which is given by

1

20 10g,10(|G(jeoe)]) = 20logsg (]

= 2010g,,(0.0185) = —34.7 dB.

(31.6)(31.65/20 + 1)((31.65/100)2 + 0.5 * 31.6j/100 + 1)

(30)

(31)

So we wish to add 34.7 dB via the lead compensator and the constant gain. The lead compensator contributes a

total of

1+31.65/20
2Olog10(|Dc(jwc)|)2010g‘10(‘ +31.65/ ’)5.02

T3 31.6j/100
Therefore, the constant gain should account for a total of 29.7 dB, i.e.
20log,((K) =29.7 = K = 30.5.
We can compute,
K, = gl_r’% sKD.(s)G(s) = KD.(0) il_rf(l) sG(s) = KD.(0) = K =305

Tiags + 1

———=— such that
agTiags +1

Let Dcylag(s) = Qqg

K, = lin%) $K109Dc 1ag(8) KDG(s) = Kiq90114430.5 = 100 = Kjqqqyqy = 3.28.
s—

Per the question, we are setting
1

——— =3.16.
O‘lagirlag

We don’t want to change the crossover frequency, so we want to ensure that

14+ Tiaqjwe 14 31.6T34,7
KlagQuag———22"C | = [3.28 — %97 | =
‘ lagMlag 100 /316 ‘ 1+10j
We can solve for T},
1+ 31.6T140)
3.28———— %971 — (.0653, /158272 5=1 = Tj,, = 0.096.
’ 1+ 105 V tag tag
1 .
Therefore, ajqq = m = 3.30 and Kjqg = 0.99. To summarize,
1
G(s) =
s(s/20 + 1)(s2/100% + 0.55/100 + 1)
5/20+1
KicadDejea =30.5————
teadDetcaa(s) /100 + 1
0.096s + 1
KiaoDetag(8) = 3.16——0—
tag De.tag(s) /316 + 1

which gives the following plots:

(32)

(35)

(36)

(37)

(38)

Bode Magnitude Plot

50+ —— Compensated
Uncompensated

~— 07
m
S
o —50;
e
2
‘e —100]
[@)]
©
= 150+

—200+

101 10° 10! 102 103 104
Frequency [rad/s]

Bode Phase Plot

—1001 N BRI —— Compensated
Uncompensated
— —1501 =8 . RSS!
wv
O
g
o —200+
Q
S
o —250
)]
(18]
£
8- —300
—350+

10-1 10° 10! 102 103 104
Frequency [rad/s]

We have w, = 33.4° which is close to 31.6°. The inaccuracy is caused by some rounding errors as | only kept two
significant digits in some steps. In many applications, this will be an acceptable error since there will always be noise
and nonlinearities in the system that will cause the simulation to be inaccurate.

(d) The phase margin is
PM = 48.98°. (42)

4.5 (a) Let the cascade controller be D (s). Then we want |D.(jw)G(jw)| < 0.05 for w > 100 (shown in red).

Note that we have a type 1 system, so for the steady state error to be smaller than 2% we have K, > 1/0.02 = 50
(Ch6, Part 3, pg 29). The orange region shows the region where this is not satisfied. Note that this itself is an
approximation, since it assumes that the gain is very close to its low frequency asymptote at w = 1.

This is represented below, alongside the Bode plot for the uncompensated system,

Bode Magnitude Plot

60

40

20

Magnitude [dB]
o

-20
—-40
-60
—100

o

§ -120

o

(]

=,

o —140

wu

v

=

& _160
—180

(b) Note that

\\\\\
101 100 101 102 103
Frequency [rad/s]
Bode Phase Plot
™~
N
N
\\\
— ||
101 109 10! 102 103
Frequency [rad/s]
K, = ll_I)I(l) sKG(s) = 10K (43)

so set K = 10. We then get the following Bode plot,

Bode Magnitude Plot

60

40

20 S

Magnitude [dB]
o

101 109 101 102 103
Frequency [rad/s]

Bode Phase Plot

—-100
™~

—-120

—140

Phase [degrees]

—160 N

—180

1071 100 101! 102 103
Frequency [rad/s]

which is not satisfactory. The value of PM is PM = 18° which is also not satisfactory.

Recall that a lag compensator (with unity DC gain) can increase the phase margin, but it would cause the gain to
decrease everywhere, as the range is in (1/«,1). Because the magnitude plot is already near the “bad regions” at
both the low and high frequencies, it doesn’t offer us a lot of flexibility.

Similarly, we can’t just use a lead compensator because it'll cause the gain at high frequencies to increase, which is
also not desirable.

So our strategy will be to first use a lag compensator to decrease the gain at high frequencies, which then allows us
to use a lead compensator to increase the phase margin. But because higher frequency gains are so far away from
the “bad regions,” it'll give us a lot of flexibility.

Currently, we have PM = 17.9°, and we wish to increase it to 55° where | added an extra 10° for safety. Let's start
off with a lag compensator.

We have already determined the DC gain to be unity K« = 1. Similar to problem 2, the magnitude of the lag

compensator at high frequencies approaches —. Let's make this —30 dB to be safe, i.e. we have
«a

1
— =103 =01 = o =32 (44)
(0%

Pick the upper corner frequency to be a decade below w = 100 rad/s, so we can be confident that at this frequency,
the magnitude of the plant with the controller is below the red region. Therefore, pick T = 0.1. This gives us the

controller
0.1s+1

Dejag = ——. 4
109 325+ 1 (45)
We get the following Bode plot,
50 Bode Magnitude Plot
™~
™~
40 RN
o
- 20
= N
@ ™
S N
2 S
g]
o —20
= N
RN
_40 \\\\
—-60
1071 100 101! 102 103
Frequency [rad/s]
Bode Phase Plot
-120 \
W
@
g
o —140
S
o)
v
©
£ —160 \\
_\
-180 T
1071 10° 10! 102 103
Frequency [rad/s]
where we have PM = 3.2°. Now let's design a lead compensator to increase the phase margin.
(1) We have already determined that we have K =1
(2) PM =3.2°
(3) Allow for an extra 10° margin for safety, so we want PM = 55°. We have
dmax = D5 — (3.2) = 52°. (46)
(4) Compute
1 —sin (bmax
=M _ (.12, (47)

o = =
1 + sin ¢max

10

(5) Pick the zero to be at the geometric mean of the two frequencies we're interested in, w = 1,100. Therefore,

wWmax = 10 rad/s so
1
Tp = = 0.29. 48
b Wmax\/a ()

We now get PM = 54° and the Bode plot is shown below,

Bode Magnitude Plot

60
™~
™~
40 = Sq
o
- 20
—_ \
[_\
S o0 s
g N
2 —20 ™
E ™~
—-40 .
60 ™
101 109 10! 102 103
Frequency [rad/s]
Bode Phase Plot
—-120
o AT
5 d AN
2 -140 N§
p \.‘___/
© N
-C —
o —160 N
\\\\
-180 H

101 109 101 102 103
Frequency [rad/s]

However, this intersects the orange region, so we should make some adjustments! The problem comes from choosing
a too aggressive « for the lag compensator, which pushed everything down. If we choose @ = 2 instead, which
corresponds to a —25 dB decrease instead of a —30 dB decrease, we get the following Bode plot,

11

Bode Magnitude Plot

60

40 RRN

Rt

20

Magnitude [dB]
o

101 109 101 102 103
Frequency [rad/s]

Bode Phase Plot

-100

|
=
N
o

N g //,___\

Phase [degrees]
L
=N
o

|
=
o
o

—180

1071 100 101! 102 103
Frequency [rad/s]

which satisfies everything. It has

PM =52° (49)
mag(w = 1) = 34.00 > 201log;,(50) (50)
mag(w = 100) = —27.14 < 201log;((0.05). (51)

Recall that we said before that the orange region is only an approximation. We actually don’t care too much about
that in this case since the at w = 1 rad/s we have a gain curve that is slightly concave down, so the actual K, value
at w = 1 will be even higher!

In conclusion, the final controller is
0.1s4+1 029s+1
1.8s+1 0.0348s+1°

De(s) = (52)

All plots and values were computed using a Python script. The reason | chose to use Python instead of Matlab was because there
already was a huge open-source community around signal processing in Python, which is essentially what frequency response /
bode plots are, so there are better resources.

There are no huge demands for speed for these tasks, and it's easier to implement an OOP approach that | can later on use
and integrate for other projects. The graphs also look much nicer!

12

import numpy as np

import matplotlib.pyplot as plt
from scipy import signal

import control as ctl

class Bode():
def __init__(self, G, freq_range = [-2, 2]):
self.G = G

Hacky fix
sometimes signal.TransferFunction has better properties

self.sys = signal.TransferFunction(G.num[0][0], G.den[0][0O])

Compute frequency response

self.w, self.mag, self.phase = signal.bode(self.sys, np.logspace(freq_range[0], freg_range[l],

1000))

Compute w_BW
self.w_BW = self.compute_w_BW()

Compute w_C
self.w_C = self.compute_w_C()

Compute PM
self.PM = self.compute_PM()

Compute GM
self.GM = self.compute_GM()

def __str__(self):
Print transfer function
w_BW_message = 'w.BW = {:.2f} rad/s'.format(self.w_BW)
w_C_message = 'w.C = {:.2f} rad/s'.format(self.w_C)
PM_message '"PM = {:.2f} degrees'.format(self.PM)
GM_message 'GM {:.2f}"'.format(self.GM)

return f'SYSTEM PROPERTIES for {self.G}\n\n' \
+ w_BW_message + '\n' \
+ w_C_message + '\n' \
+ PM_message + '‘\n' \
+ GM_message

def compute_GM(self):
Defined as the inverse of |KG(j omega)| when
angle G(j omega) = —180 degrees
try:
Find index when phase is —180 degrees
index = np.where(self.phase < —180)[0][0]

Compute the magnitude at this index
mag = self.mag[index]

convert from dB to linear
mag = 10xx(mag/20)

13

Compute GM

return 1/mag

return np.abs(mag)
except:

return np.inf

def w_at_phase(self, phase):
Defined as the frequency at which the phase of the
system's frequency response is at a certain phase
Find index of first value that is closest to phase
index = np.where(self.phase < phase)[0][0]

Compute w
return self.w[index]

def mag_at_w(self, w):
Defined as the magnitude of the system's frequency
response at a certain frequency
Find index of first value that is closest to mag
index = np.where(self.w > w)[0][0]

Compute w
return self.mag[index]

def compute_w_C(self):
Defined as the frequency at which the magnitude of
the system's frequency response becomes 0dB
try:
Find index of first value that is less than 0 dB
index = np.where(self.mag < 0)[0][0]

Compute w_C

return self.w[index]
except:

return np.inf

def compute_w_BW(self):
Defined as frequency at which the magnitude of
the system's frequency response decreases to —3 dB
relative to its maximum value

Maximum voltage
Find index of first value that is closest to —3 dB

try:
index = np.where(self.mag < —3)[0][0]
return self.w[index]

except:
return np.inf

Compute w_BW

14

def compute_PM(self):
The amount by which the phase of G(j omega) exceeds
—180 deg when |KG(j omega)| = 1.

try:
Find index when magnitude is 0 dB
index = np.where(self.mag < 0)[0][0]

Compute the phase at this index
phase = self.phase[index]

Compute PM

return phase + 180
except:

return np.inf

def plot_bode(self, file_name = None, plot = True):

Create a figure

plt.figure()

reset settings
plt.rcParams.update(plt.rcParamsDefault)

make plot bigger
plt.rcParams[figure.figsize] = (15,15)

make text bigger
plt.rcParams.update({'font.size': 22})

Create Bode magnitude plot (subplot)

plt.subplot(2, 1, 1)

plt.semilogx(self.w, self.mag)

plt.xlabel('Frequency [rad/s]"')

plt.ylabel('Magnitude [dB]"')

plt.title('Bode Magnitude Plot"')

plt.grid(which="'both', linestyle='-', linewidth='0.5"', color='gray')

Create Bode phase plot (subplot)
plt.subplot(2, 1, 2)
plt.semilogx(self.w, self.phase)
plt.xlabel('Frequency [rad/s]"')
plt.ylabel('Phase [degrees]')
plt.title('Bode Phase Plot"')
plt.grid(which="both', linestyle='—

, linewidth='0.5"', color='gray')

plt.subplots_adjust(hspace=0.4)

If file_name is not None, save the plot
if file_name is not None:
plt.savefig(file_name)

Show the plots
if plot:
plt.show()

15

