
AER372: Control Systems
Assignment 4

QiLin Xue

Spring 2023

4.1 Recall that a lead compensator is in the form of

Dc(s) = K
Ts+ 1
αTs+ 1 (1)

for z < p. Our transfer function is
G(s) = 50000

s(s+ 10)(s+ 50) , (2)

and we wish to satisfy PM > 50◦ and ωBW ≥ 20 rad/sec. The Bode Plot is shown below for the original system with
no compensator,

which has the following parameters (see Appendix for computation)

ωBW = 33.61 rad/s (3)
ωC = 28.74 rad/s (4)
PM = −10.70◦ (5)

1

(1) Note that K = 1/10 gives wC = 7.83 rad/s.

(2) From above, we have PM = −10.7◦

(3) Set requirement to be PM ≥ 50◦ + 10◦ instead, so

PM = 60◦ − (10.7◦) = 70◦ = φmax (6)

(4) Compute
α = 1− sinφmax

1 + sinφmax
= 0.031 (7)

(5) Pick ωmax = 20 to get
Td = 1√

αωmax
= 0.283980917 (8)

so
Dc(s) = 0.28s+ 1

0.0088s+ 1 . (9)

This gives the following Bode Plot,

which has parameters

ωBW = 31.22 rad/s (10)
ωC = 23.25 rad/s (11)
PM = 68.04◦ (12)

which satisfies the necessary conditions. The bandwidth is around

ωBW ≈ 1 rad/s. (13)

2

4.2 A lag compensator is in the form
Dc(s) = Kα

TIs+ 1
αTIs+ 1 (14)

for α > 1. For unity DC gain, we want Dc(0) = 1 so K = 1
α
. The frequency response for

G(s) = 10
s(s/1.4 + 1)(s/3 + 1) = 210

s(s+ 3)(5s+ 7) = 210
5s3 + 22s2 + 21s (15)

looks like the following,

which has parameters

ωBW = 3.48 rad/s (16)
ωC = 3.00 rad/s (17)
PM = −20.02◦ (18)

To design our controller, we first assume that adding in the compensator will not significantly change the shape of the
phase plot. The frequency at which the phase margin is 45◦ (where we added 10◦ for safety) is ω0 = 0.81 rad/s. The
magnitude at this frequency is

M0 = 20 dB, (19)

so we need to determine α, T such that
|Dc(jω0)| = 10−20/20 = 0.1. (20)

The magnitude at high frequencies approach
lim

x→∞
|Dc(xj)| = 1

α
, (21)

so set α = 10 and pick the corner frequency to be

1/TI = 0.81/10 = 0.081 rad/s (22)

3

so we know that at ω0 = 0.81 rad/s, we can guarantee that the magnitude is 0 dB. From the above equation, we get
TI = 12.3 so we get our first estimate of

Dc(s) = 12.3s+ 1
123s+ 1 . (23)

The new Bode Plot is shown below,

which has
PM = 38.61◦, (24)

thus satisfying the necessary conditions.

4

4.3 We have
G(s) = 0.05(s+ 25)

s2(s2 + 0.1s+ 4) = s+ 25
20s4 + 2s3 + 80s2 (25)

which has the following Bode Plot,

and has the following parameters

ωBW = 0.71 rad/s (26)
ωC = 0.59 rad/s (27)
PM = 0.43◦ (28)
GM = 9.57. (29)

The condition for GM is already satisfied, but we want PM ≥ 45◦. Let us considder different compensations:

• Lag Compensator: We can increase the gain at low frequencies and decrease the gain at high frequencies. Therefore,
if we want to increase the phase margin, we are also decreasing the bandwidth!

• PI Compensator: Similar to above, this is designed to keep the bandwidth low by increasing the gain at low frequencies
and decreasing the gain at high frequencies, except now the gain approaches infinity as the frequency approaches
zero.

• Lead Compensator: This does the opposite. It decreases the gain at low frequencies and increases the gain at high
frequencies. Therefore, if we want to increase the phase margin, we are also increasing the bandwidth! This is the
desired response.

Because not only do we want to increase PM but we also want to increase the bandwidth, we should use a lead
compensator. Note that other compensators such as lead-lag have more parameters than a lead compensator (which can
accomplish this task), so they are out of the question.

5

4.4 (a) We first compute |G(jωc)|, which is given by

20 log10(|G(jωc)|) = 20 log10

(∣∣∣∣ 1
(31.6j)(31.6j/20 + 1)((31.6j/100)2 + 0.5 ∗ 31.6j/100 + 1)

∣∣∣∣) (30)

= 20 log10(0.0185) = −34.7 dB. (31)

So we wish to add 34.7 dB via the lead compensator and the constant gain. The lead compensator contributes a
total of

20 log10(|Dc(jωc)|) = 20 log10

(∣∣∣∣ 1 + 31.6j/20
1 + 31.6j/100

∣∣∣∣) = 5.02 (32)

Therefore, the constant gain should account for a total of 29.7 dB, i.e.

20 log10(K) = 29.7 =⇒ K = 30.5. (33)

We can compute,

Kv = lim
s→0

sKDc(s)G(s) = KDc(0) lim
s→0

sG(s) = KDc(0) = K = 30.5 (34)

(b) Let Dc,lag(s) = αlag
Tlags+ 1

αlagTlags+ 1 such that

Kv = lim
s→0

sKlagDc,lag(s)KDcG(s) = Klagαlag30.5 = 100 =⇒ Klagαlag = 3.28. (35)

(c) Per the question, we are setting
1

αlagTlag
= 3.16. (36)

We don’t want to change the crossover frequency, so we want to ensure that∣∣∣∣Klagαlag
1 + Tlagjωc

1 + jωc/3.16

∣∣∣∣ =
∣∣∣∣3.281 + 31.6Tlagj

1 + 10j

∣∣∣∣ = 1. (37)

We can solve for Tlag, ∣∣∣∣3.281 + 31.6Tlagj

1 + 10j

∣∣∣∣ = 0.0653
√

1582T 2
lag + 5 = 1 =⇒ Tlag = 0.096. (38)

Therefore, αlag = 1
3.16Tlag

= 3.30 and Klag = 0.99. To summarize,

G(s) = 1
s(s/20 + 1)(s2/1002 + 0.5s/100 + 1) (39)

KleadDc,lead(s) = 30.5 s/20 + 1
s/100 + 1 (40)

KlagDc,lag(s) = 3.160.096s+ 1
s/3.16 + 1 , (41)

which gives the following plots:

6

We have ωc = 33.4◦ which is close to 31.6◦. The inaccuracy is caused by some rounding errors as I only kept two
significant digits in some steps. In many applications, this will be an acceptable error since there will always be noise
and nonlinearities in the system that will cause the simulation to be inaccurate.

(d) The phase margin is
PM = 48.98◦. (42)

7

4.5 (a) Let the cascade controller be Dc(s). Then we want |Dc(jω)G(jω)| < 0.05 for ω ≥ 100 (shown in red).

Note that we have a type 1 system, so for the steady state error to be smaller than 2% we have Kv > 1/0.02 = 50
(Ch6, Part 3, pg 29). The orange region shows the region where this is not satisfied. Note that this itself is an
approximation, since it assumes that the gain is very close to its low frequency asymptote at ω = 1.

This is represented below, alongside the Bode plot for the uncompensated system,

(b) Note that
Kv = lim

s→0
sKG(s) = 10K (43)

so set K = 10. We then get the following Bode plot,

8

which is not satisfactory. The value of PM is PM = 18◦ which is also not satisfactory.

(c) Recall that a lag compensator (with unity DC gain) can increase the phase margin, but it would cause the gain to
decrease everywhere, as the range is in (1/α, 1). Because the magnitude plot is already near the “bad regions” at
both the low and high frequencies, it doesn’t offer us a lot of flexibility.

Similarly, we can’t just use a lead compensator because it’ll cause the gain at high frequencies to increase, which is
also not desirable.

So our strategy will be to first use a lag compensator to decrease the gain at high frequencies, which then allows us
to use a lead compensator to increase the phase margin. But because higher frequency gains are so far away from
the “bad regions,” it’ll give us a lot of flexibility.

(d) Currently, we have PM = 17.9◦, and we wish to increase it to 55◦ where I added an extra 10◦ for safety. Let’s start
off with a lag compensator.

We have already determined the DC gain to be unity Kα = 1. Similar to problem 2, the magnitude of the lag
compensator at high frequencies approaches 1

α
. Let’s make this −30 dB to be safe, i.e. we have

1
α

= 10−30/20 = 0.1 =⇒ α = 32. (44)

9

Pick the upper corner frequency to be a decade below ω = 100 rad/s, so we can be confident that at this frequency,
the magnitude of the plant with the controller is below the red region. Therefore, pick TI = 0.1. This gives us the
controller

Dc,lag = 0.1s+ 1
3.2s+ 1 . (45)

We get the following Bode plot,

where we have PM = 3.2◦. Now let’s design a lead compensator to increase the phase margin.

(1) We have already determined that we have K = 1

(2) PM = 3.2◦

(3) Allow for an extra 10◦ margin for safety, so we want PM = 55◦. We have

φmax = 55− (3.2) = 52◦. (46)

(4) Compute
α = 1− sinφmax

1 + sinφmax
= 0.12. (47)

10

(5) Pick the zero to be at the geometric mean of the two frequencies we’re interested in, ω = 1, 100. Therefore,
ωmax = 10 rad/s so

TD = 1
ωmax
√
α

= 0.29. (48)

We now get PM = 54◦ and the Bode plot is shown below,

However, this intersects the orange region, so we should make some adjustments! The problem comes from choosing
a too aggressive α for the lag compensator, which pushed everything down. If we choose α = 2 instead, which
corresponds to a −25 dB decrease instead of a −30 dB decrease, we get the following Bode plot,

11

which satisfies everything. It has

PM = 52◦ (49)
mag(ω = 1) = 34.00 > 20 log10(50) (50)

mag(ω = 100) = −27.14 < 20 log10(0.05). (51)

Recall that we said before that the orange region is only an approximation. We actually don’t care too much about
that in this case since the at ω = 1 rad/s we have a gain curve that is slightly concave down, so the actual Kv value
at ω = 1 will be even higher!

In conclusion, the final controller is

Dc(s) = 10 · 0.1s+ 1
1.8s+ 1 ·

0.29s+ 1
0.0348s+ 1 . (52)

All plots and values were computed using a Python script. The reason I chose to use Python instead of Matlab was because there
already was a huge open-source community around signal processing in Python, which is essentially what frequency response /
bode plots are, so there are better resources.

There are no huge demands for speed for these tasks, and it’s easier to implement an OOP approach that I can later on use
and integrate for other projects. The graphs also look much nicer!

12

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy import signal
4 import control as ctl
5
6 class Bode():
7 def __init__(self, G, freq_range = [−2, 2]):
8 self.G = G
9
10 # Hacky fix
11 # sometimes signal.TransferFunction has better properties
12 self.sys = signal.TransferFunction(G.num[0][0], G.den[0][0])
13
14 # Compute frequency response
15 self.w, self.mag, self.phase = signal.bode(self.sys, np.logspace(freq_range[0], freq_range[1],

1000))
16
17
18 # Compute w_BW
19 self.w_BW = self.compute_w_BW()
20
21 # Compute w_C
22 self.w_C = self.compute_w_C()
23
24 # Compute PM
25 self.PM = self.compute_PM()
26
27 # Compute GM
28 self.GM = self.compute_GM()
29
30 def __str__(self):
31 # Print transfer function
32 w_BW_message = 'w_BW = {:.2f} rad/s'.format(self.w_BW)
33 w_C_message = 'w_C = {:.2f} rad/s'.format(self.w_C)
34 PM_message = 'PM = {:.2f} degrees'.format(self.PM)
35 GM_message = 'GM = {:.2f}'.format(self.GM)
36
37 return f'SYSTEM PROPERTIES for {self.G}\n\n' \
38 + w_BW_message + '\n' \
39 + w_C_message + '\n' \
40 + PM_message + '\n' \
41 + GM_message
42
43 def compute_GM(self):
44 '''
45 Defined as the inverse of |KG(j omega)| when
46 angle G(j omega) = −180 degrees
47 '''
48 try:
49 # Find index when phase is −180 degrees
50 index = np.where(self.phase < −180)[0][0]
51
52 # Compute the magnitude at this index
53 mag = self.mag[index]
54
55 # # convert from dB to linear
56 # mag = 10**(mag/20)
57

13

58 # # Compute GM
59 # return 1/mag
60 return np.abs(mag)
61 except:
62 return np.inf
63
64 def w_at_phase(self, phase):
65 '''
66 Defined as the frequency at which the phase of the
67 system's frequency response is at a certain phase
68 '''
69 # Find index of first value that is closest to phase
70 index = np.where(self.phase < phase)[0][0]
71
72 # Compute w
73 return self.w[index]
74
75 def mag_at_w(self, w):
76 '''
77 Defined as the magnitude of the system's frequency
78 response at a certain frequency
79 '''
80 # Find index of first value that is closest to mag
81 index = np.where(self.w > w)[0][0]
82
83 # Compute w
84 return self.mag[index]
85
86 def compute_w_C(self):
87 '''
88 Defined as the frequency at which the magnitude of
89 the system's frequency response becomes 0dB
90 '''
91 try:
92 # Find index of first value that is less than 0 dB
93 index = np.where(self.mag < 0)[0][0]
94
95 # Compute w_C
96 return self.w[index]
97 except:
98 return np.inf
99
100 def compute_w_BW(self):
101 '''
102 Defined as frequency at which the magnitude of
103 the system's frequency response decreases to −3 dB
104 relative to its maximum value
105 '''
106 # Maximum voltage
107
108 # Find index of first value that is closest to −3 dB
109
110 try:
111 index = np.where(self.mag < −3)[0][0]
112 return self.w[index]
113 except:
114 return np.inf
115 # Compute w_BW
116

14

117 def compute_PM(self):
118 '''
119 The amount by which the phase of G(j omega) exceeds
120 −180 deg when |KG(j omega)| = 1.
121 '''
122
123 try:
124 # Find index when magnitude is 0 dB
125 index = np.where(self.mag < 0)[0][0]
126
127 # Compute the phase at this index
128 phase = self.phase[index]
129
130 # Compute PM
131 return phase + 180
132 except:
133 return np.inf
134
135 def plot_bode(self, file_name = None, plot = True):
136
137 # Create a figure
138 plt.figure()
139 # reset settings
140 plt.rcParams.update(plt.rcParamsDefault)
141
142 # make plot bigger
143 plt.rcParams[figure.figsize] = (15,15)
144
145 # make text bigger
146 plt.rcParams.update({'font.size': 22})
147
148 # Create Bode magnitude plot (subplot)
149 plt.subplot(2, 1, 1)
150 plt.semilogx(self.w, self.mag)
151 plt.xlabel('Frequency [rad/s]')
152 plt.ylabel('Magnitude [dB]')
153 plt.title('Bode Magnitude Plot')
154 plt.grid(which='both', linestyle='−', linewidth='0.5', color='gray')
155
156 # Create Bode phase plot (subplot)
157 plt.subplot(2, 1, 2)
158 plt.semilogx(self.w, self.phase)
159 plt.xlabel('Frequency [rad/s]')
160 plt.ylabel('Phase [degrees]')
161 plt.title('Bode Phase Plot')
162 plt.grid(which='both', linestyle='−', linewidth='0.5', color='gray')
163
164 plt.subplots_adjust(hspace=0.4)
165
166
167 # If file_name is not None, save the plot
168 if file_name is not None:
169 plt.savefig(file_name)
170
171 # Show the plots
172 if plot:
173 plt.show()

15

