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Wormholes are a common plot device used in several science fiction books and films, all including the iconic but
wildly inaccurate “bending paper in half and poking a hole with a pencil” demonstration. This report will provide a
rigorous introduction to the mathematics and physics behind wormholes. In particular, we will focus our attention
on a certain type of traversable wormhole, developed by Michael Morris and Kip Thorne in 1988, as a realistic plot
device for Carl Sagan’s book Contact [1]!

We will analyze the characteristics of this wormhole in more detail, and similar to Morris and Thorne’s initial paper,
show that this metric violates the null energy condition and demands for the existence of exotic matter. We build
onto the original paper by showing that the average null energy condition is also broken, allowing us to quantify the
amount of exotic matter needed for each wormhole geometry.

I. BASIC METRIC

In this report, we will consider inter-universe wormholes, which are wormholes that connect two universes. This
allows symmetric arguments to be made, simplifying the mathematics. For intra-universe travel, one can imagine that
the mouths of the wormhole are located far away such that the inter-universe wormhole metric is a good approximation.
We can assume that in general, wormholes are static, nonrotating, and spherically symmetric, so the most general
form is given by a variation of the Schwarzschild solution,[1]

ds2 = −e2Φ(r) dt2 +
dr2

1− b(r)/r
+ r2

(
dθ2 + sin2 θ dϕ2

)
, (1)

The two universes this wormhole connects intersects at r = r0 and can be identified by having two coordinate charts
[r0,∞). The function b(r) is known as the shape function and Φ±(r) is the redshift function, where

lim
r→∞

b(r) = 2M (2)

to retrieve the asymptotic limit. Note that this is not the most general metric. The redshift and shape function do
not need to be the same in both universes. That is, time can run at different speeds[2]. However, for simplicity and
to allow this metric to be used for inter-universe wormholes, we will make these simplifying assumptions. The proper
radial distance can be defined to be

`(r) = ±
∫ r

r0

dr√
1− b±(r)/r

. (3)
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The throat of the wormhole is the minimum value of r(`), which we denote as r(0) = r0. Since

dr

d`
= ±

√
1− b

r
, (4)

we must have b(r0) = r0, and b(r) ≤ r. We can make the following claim,

Claim 1. In some open neighborhood near the throat (r0, r∗), the following inequality holds:

b′(r) <
b(r)

r
. (5)

Proof. The second derivative of r with respect to the proper distance is

d2r

d`2
=
dr

d`

d

dr

(
±
√

1− b/r
)

(6)

=
1

2r

(
b(r)

r
− b′(r)

)
. (7)

Also recall that we can write

r(`) = r0 +

�
�

�
��dr

d`

∣∣∣∣
r=r0

`+
1

2!

d2r

d`2

∣∣∣∣
r=r0

`2 +O(`3), (8)

Note that r(`) is an increasing function, so r′′(`) must be positive in some neighbourhood near the throat. From 7,

we see that this implies that b′(r) < b(r)
r .

It is important to recall that the increasing condition only implies that r′′(`) > 0 for r ∈ (r0, r∗), but the second
derivative could still be zero at the point r = r0. This subtlety will be important later in claim 2.

A. Curvature

We can compute the Einstein tensors. To make computations easier, we can consider a new coordinate system,
defined by

et̂ = e−Φet (9)

er̂ = (1− b/r)1/2er (10)

eθ̂ =
1

r
eθ (11)

eϕ̂ =
1

r sin θ
eϕ, (12)

such that the metric in this basis takes on the standard Minkowski metric, ηµ̂ν̂ = eµ̂eν̂ . It can then be computed (as
done in the Appendix), that

Gt̂t̂ =
b′(r)

r2
(13)

Gr̂r̂ = −b(r)
r3

+
2

r

(
1− b(r)

r

)
Φ′(r) (14)

Gθ̂θ̂ = Gϕ̂ϕ̂ =
1

2r3

{
[1 + rΦ′(r)]

[
b(r)− rb′(r) + 2r2

(
1− b(r)

r

)
Φ′(r)

]}
+

(
1− b(r)

r

)
Φ′′(r). (15)

At the throat r = r0, these become

Gt̂t̂

∣∣∣∣
r0

=
b′(r0)

r2
0

(16)

Gr̂r̂

∣∣∣∣
r0

= − 1

r2
0

(17)

Gθ̂θ̂

∣∣∣∣
r0

= Gϕ̂ϕ̂

∣∣∣∣
r0

=
1

2r2
0

(1 + r0Φ′(r0))(1 + b′(r0)). (18)
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Let the stress energy tensor be T = diag(ρ,−τ, p, p), where τ = −pr is the radial tension. Einstein’s equation
Gµν = 8πTµν gives, for equation 13,

b′(r) = 8πρr2, (19)

and integrating, we obtain

b(r) = b(r0) + 2

∫ r

r0

4πρr2 dr . (20)

We can identify this as a mass term, allowing us to define b(r) = 2m(r), with

m(r) =
r0

2
+

∫ r

r0

4πρr2 dr . (21)

Notice that this definition was made such that it agrees with the definition of mass in the Schwarzschild solution when
r0 = 0. Let ρ,τ0, p0 be the corresponding stress energy coefficients at r = r0. We can write the following relationship,

Claim 2. For some open neighbourhood near the throat (r0, r∗), the following inequality holds:

ρ0 ≤ τ0. (22)

Proof. Using claim 1 with equation 19 gives

8πρr2 <
2m(r)

r
, (23)

where the substitution b(r) = 2m(r) was made. Rearranging for ρ0, we have

ρ0 ≤
1

8πr2
0

. (24)

Note that the inequality is weaker now because we are looking at the point r = r0 and not the open neighborhood
(r0, r∗). Equation 17 along with Einstein’s equation gives

τ0 =
1

8πr2
0

. (25)

Combining these together gives the desired inequality.

This is an important result which we will later show gives rise to energy condition violations, motivating the need
for exotic matter.

B. Motivation

The motivation for why the Schwarzschild metric might possibly be related to inter-universe travel is subtle, and
neglected by many authors such as Thorne, Visser, and Lobo, other than a brief mention[1][2][3]. We work out
the details in this section, following the work done by Ludwig Flamm in 1916, who at the time, did not make the
connection to wormholes[4].

Recall that the universe can be described by a 3-sphere embedded in R4, such that the spatial part of its metric is
given by

dσ2 = R2
0

(
dψ2 + sin2 ψ dϕ2 + sin2 ψ sin2 θ dθ2

)
. (26)

Taking the equatorial slice θ = π
2 , it reduces down to the metric for a 2-sphere,

dσ2 = R2
0

(
dψ2 + sin2 ψ dϕ2

)
. (27)

This is the metric for a surface generated by a curve, in this case, a circle. Let the coordinate z point in the direction
of the axis of rotation, and let ψ ∈ [0, 2π) be the angle spanning the circle, such that the arc-length of this circle is



4

given by R0ψ. Let the coordinate R point in the direction perpendicular to z, in the plane of the circle. Then, we
have

dz

dr
= tanψ. (28)

In this specific example, we have sinψ = R
R0

so equation 28 gives

dz

dr
= ± R√

1−R2/R2
0

, (29)

and integrating gives

z2 = R2
0 −R2, (30)

which is the equation of a circle, as expected. We can apply this technique to the Schwarzschild metric, where the
corresponding spatial metric is

dσ2 =
1

1− 2M/r
+ r2 dϕ2 . (31)

Consider the substitution cos2 ψ = 1− 2M
r . We can compute,

− sinψ cosψ dψ =
2M

r2
dr , (32)

which yields

dr2 =

(
1− 2M

r

)
· r

2

2M
dψ2 (33)

Using this, we have,

dσ2 =
dr2

1− 2M/r
+ r2 dϕ2 (34)

=
r3

2M
dψ2 + r2 dϕ2 (35)

=
r3

2M

(
dψ2 +

2M

r
dϕ2

)
(36)

=
r3

2M

(
dψ2 + sin2 ψ dϕ2

)
. (37)

Which is in the same form as the metric of a 2-sphere. Solving the differential equation

dψ

dr
=

√
2M

r − 2M
(38)

gives

z2 = 8M(r − 2M), (39)

which is plotted in the figure below, for the case M = 1.
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Rotating this curve about the z-axis then generates the standard wormhole embedding diagram, i.e. it encloses two
asymptotically flat regions of space, and is visualized in the diagram below. The curve in black depicts the generating
curve this coordinate transformation produces.
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II. EXOTIC MATTER

Energy conditions are used in general relativity to represent requirements for the energy density to be positive. The
weak energy condition and null energy condition both require that[5]

ρ+ pi ≥ 0 (40)

for i = 1, 2, 3. However, recall that in the region (r0, r∗), the inequality

ρ+ (−τ) < 0 (41)

holds and therefore violates both the weak energy and null energy condition. This is expected, since if a beam of
laser was shot through the wormhole, its cross-sectional area will first decrease before increasing, and this behavior
can only be caused by gravitational repulsion, which requires exotic matter[1]. Classically, particles obey the weak
energy condition, but in quantum field theory, there are examples where this energy condition is broken. In fact, all
energy conditions used in general relativity are broken in quantum field theory[3]. Quantum field theory is beyond
the scope of this report, so the discussion on exotic matter will end here.

A. Average Null Energy Condition

Instead of requiring that the energy density be positive everywhere, we can instead require that the average energy
density be positive, such that if we integrate over a null curve Γ, we have

IΓ =

∫
Γ

(ρ− τ)ξ2 dλ ≥ 0, (42)

where ξ is a radial null geodesic. Because the geodesic is radial, we can parametrize the curve using the proper
distance ` such that

dt =

√
grr
gtt

dr =
e−Φ(r)√

1− b(r)/r
dr = e−Φ(r) d` . (43)

Since dλ
dt = gtt = e2Φ(r), we can rewrite

IΓ =

∫ ∞
−∞

(ρ− τ)e−Φ d` (44)

= − 1

4π

∫ ∞
r0

1

r2
e−Φ

√
1− b(r)

r
dr , (45)
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where the second line is derived by applying the Einstein field equations to write formulas for ρ and τ, then integrating
by parts[2]. Note that the integrand will always be positive, so IΓ < 0, violating the average null energy condition.

The quantity IΓ allows for us to quantify how much exotic matter is needed for a certain wormhole geometry. In the
later section, we will consider a few specific wormhole geometries that allows traversability and compute this integral.
While it is impossible to satisfy the average null energy condition, we can do our best to minimize the amount of
exotic matter needed.

III. TRAVERSABILITY

We will use a working definition of traversable wormholes to be one such that a person can traverse through it
without dying and in a reasonable amount of time. This definition is different from some authors such as Matt Visser,
who define it to be any wormhole that is macroscopic and exists for a finite amount of time. In this section, we will
see that such a wormhole is indeed possible to construct, given that we have access to exotic matter. Consider a
trajectory that starts at proper radial distance ` = −`0 and ` = +`0 and the velocity vector is always radial.

The proper time must be ∫ `1

−`1

1

vγ
d` < 1 year, (46)

where v is the speed as measured by a stationary observer. The 1 year requirement is completely arbitrary, but was
given to be in agreement with Morris and Thorne[1]. To not die, the traveler must experience minimal tidal forces.
We wish to work in the coordinates of the traveler, which we can do with the Lorentz transformation,

e0̂ = U = γet̂ − γver̂ (47)

e1̂ = −γvet̂ + γer̂ (48)

e2̂ = eθ̂ (49)

e3̂ = eϕ̂, (50)

where Uµ = (1, 0, 0, 0) is the 4-velocity in this new frame. The tidal force is given by

(∆a)µ = −RµανβUα(∆ξ)νUβ = −Rµ0̂ν0̂U
0̂(∆ξ)νU 0̂, (51)

where Rµ0̂ν0̂ is sometimes known as the tidal tensor. Tensor transformation laws give us

R1̂
0̂1̂0̂ = γ4Rr̂ t̂r̂t̂ (52)

R2̂
0̂2̂0̂ = R3̂

0̂3̂0̂ = γ2Rθ̂ t̂θ̂t̂ + γ2v2Rϕ̂t̂ϕ̂t̂. (53)

Note that in Thorne’s original paper, they omitted the γ4 term, but as we shall soon see, minimizing the tidal force
implies that we must demand v � 1 so γ ∼ 1 and we can ignore it[1]. We can compute,

(∆a)0̂ = −R0̂
0̂ν0̂U

0̂(∆ξ)νU 0̂. (54)

This is zero since as shown in the Appendix, no nonzero curvature tensors have more than two indices being a t, once
we transform make to the observer’s frame. Instead, we note that

(∆a)1̂ = −R1̂
0̂ν0̂U

0̂(∆ξ)νU 0̂, (55)

(∆a)2̂ = −R2̂
0̂ν0̂U

0̂(∆ξ)νU 0̂, (56)

where after applying the relevant tensor transformation laws, give us∣∣∣∣(1− b(r)

r

){
−Φ′′ − (Φ′)2

}
+

1

2r2
(b′(r)r − b(r))Φ′

∣∣∣∣ ≤ g

L
(57)

γ2

r2

∣∣∣∣(r − b(r))Φ′ + v2

2

(
b′(r)− b(r)

r

)∣∣∣∣ ≤ g

L
, (58)
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where L = |∆ξ| is the maximum distance between two points on the human body, and g is the maximum tidal
acceleration. The first inequality constrains the redshift function and the second inequality constrains the speed at
which the traveler is moving at. Typically, the behavior at the throat of the wormhole is characteristic of the overall
behaviour since forces tend to be maximal there. We obtain,

|Φ′| ≤ 2gr0

(1− b′(r))L
(59)

γ2v2 ≤ 2gr2
0

(1− b′(r))L
. (60)

The greater the throat r0 is, the greater the freedom for the redshift function. Similarly, we get more freedom if b′(r)
approaches 1. We will examine a few simple solutions.

A. Constant Redshift

If the redshift is constant, i.e. Φ′ = 0 then we can obtain for all values of r,

γ2v2

2r2

∣∣∣∣b′(r)− b(r)

r

∣∣∣∣ ≤ g

L
. (61)

Unlike in general, i.e. in the gravitational field of a massive object, there are no tidal forces when the traveler is
stationary v = 0. Note that all our curvature terms depend only on Φ′ and not Φ, so to make things simpler, this
gives the same results as choosing Φ = 0, which some authors have chosen to do instead[3]. It is also why this form
of solution is sometimes known as the zero tidal solution. We can choose the shape function to satisfy the conditions
of the wormhole described in the first section. With this new metric, one possible shape function is given by

b(r) =
√
b0r. (62)

Thorne shows that the inequalities we derived above imply that b = 10 m, v = 60 m/s and ∆τ = 1 hour satisfy the
required inequalities[1]. However, note that the Einstein tensors take on the simpler form,

Gt̂t̂ =
b′

r2
= 8πρ (63)

Gr̂r̂ = − b

r3
= −8πτ (64)

Gθ̂θ̂ = Gϕ̂ϕ̂ =
1

2r3
(b− b′r) = 8πp, (65)

allowing us to directly compute

ρ− τ = −2p, (66)

so the weak energy condition will be violated everywhere, and not just localized to a specific spot[2]. This is extremely
troubling, and other shape functions will exhibit this same behavior. This suggests that while constant redshift may
be a good model for traversability, it is very unlikely to exist if we wish to minimize the amount of exotic matter
needed. Namely, the average null energy integral gives

IΓ = − 1

4π

∫ ∞
r0

1

r2

√
1−
√
b0r

r
dr (67)

− 2

15πr0
, (68)

where we recall that b0 = b(r0) = r0. Therefore, the amount of exotic energy we need scales by 1
r0

This makes sense,
as a larger wormhole would require more exotic energy to keep it together.
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B. Zero Density

Similarly, we can consider choosing the shape function to be a constant b(r) = r0 instead, and allow us to choose
an appropriate redshift function. Note that for all redshift functions, we have Gτ̂ τ̂ = 0 so we have,

ρ− τ = − r0

8πr3
+

1

4π

(
1− r0

r

) Φ′

r
(69)

which comes from the Einstein equations. One possible redshift function we can choose is one that in the limit, allows
us to obtain the standard Schwarzschild metric, i.e. choose Φ such that

ds2 = −
(

1− r0

r
+

ε

r2

)
dt2 +

dr2

1− r0
r

+ r2
[
dθ2 + sin2 θ dϕ2

]
(70)

The average null energy integral can be computed by recognizing that

e−Φ(r) =
(

1− r0

r
+

ε

r2

)−1/2

= r

√
1

r2 − r0r + ε
, (71)

such that

IΓ = − 1

4π

∫ ∞
r0

1

r

√
1

r2 − r0r + ε

√
1− r0

r
dr . (72)

The integrand is a monotonically decreasing function of ε for all values of r ∈ (r0,∞), so we can create a lower bound
by setting ε = 0. After simplifying, we get,

IΓ > −
1

4π

∫ ∞
r0

1

r2
dr (73)

=⇒ − 1

4πr0
< IΓ < 0, (74)

so the amount of exotic energy we need is bounded by 1/r0, which has the same behavior as the constant redshift
black hole. The only difference is that in this metric, the exotic matter is contained in only a small section of the
wormhole. Particularly, the regions with high radial tension, and thus violate the weak energy condition has a width
of around the order r ∼

√
ε[2]. Therefore, if ε = 0, no energy conditions will be violated at or near r = r0. However,

ε = 0 returns us the standard Schwarzschild metric, where r = r0 is the event horizon. Therefore, we see that by
adding a small correction term, we are able to turn what was initially the event horizon into the throat of a wormhole
connecting two universes.
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national Publishing, Basel, Switzerland, 1 edition, May 2017.
[4] Gary W. Gibbons. Editorial note to: Ludwig flamm, contributions to einstein’s theory of gravitation. General Relativity

and Gravitation, 47(6), May 2015.
[5] Robert M Wald. General Relativity. University of Chicago Press, Chicago, IL, June 1984.



In[ ]:= n = 4;

coord = {t, r, θ, ϕ};

metric = {{-Exp[2 * R[r]], 0, 0, 0},

{0, 1 / (1 - b[r] / r), 0, 0}, {0, 0, r^2, 0}, {0, 0, 0, r^2 * Sin[θ]^2}};

metric // MatrixForm

Out[ ]//MatrixForm=

-2 R[r] 0 0 0

0
1

1-
b[r]

r

0 0

0 0 r2 0

0 0 0 r2 Sin[θ]2

In[ ]:= inversemetric = Simplify[Inverse[metric]];

inversemetric // MatrixForm

Out[ ]//MatrixForm=

--2 R[r] 0 0 0

0 1 -
b[r]

r
0 0

0 0
1

r2
0

0 0 0
Csc[θ]2

r2

In[ ]:=

-
-2 R[r] 0 0 0

0 1 -
b[r]

r
0 0

0 0
1

r2
0

0 0 0
Csc[θ]2

r2

standardmetric = {{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

standardmetric // MatrixForm

Out[ ]= -
-2 R[r], 0, 0, 0, 0, 1 -

b[r]

r
, 0, 0, 0, 0,

1

r2
, 0, 0, 0, 0,

Csc[θ]2

r2


Out[ ]//MatrixForm=

-1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

In[ ]:= Det[{{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}]

Out[ ]= -1

In[ ]:= affine := affine = Simplify[Table[(1 / 2) * Sum[(inversemetric〚i, s〛) *

(D[metric〚s, j〛, coord〚k〛 ] +

D[metric〚s, k〛, coord〚j〛 ] - D[metric〚j, k〛, coord〚s〛 ]), {s, 1, n}],

{i, 1, n}, {j, 1, n}, {k, 1, n}] ]

In[ ]:= listaffine := Table[If[UnsameQ[affine〚i, j, k〛, 0],

{ToString[Γ[i, j, k]], affine〚i, j, k〛}] , {i, 1, n}, {j, 1, n}, {k, 1, j}]

Printed by Wolfram Mathematica Student Edition

IV. APPENDIX

The code was heavily inspired by James B. Hartle’s online repository.



In[ ]:= TableForm[Partition[DeleteCases[Flatten[listaffine], Null], 2],

TableSpacing  {2, 2}] // FullSimplify

Out[ ]//TableForm=

"Γ[1, 2, 1]" R′[r]

"Γ[2, 1, 1]"

2 R[r]

(r-b[r]) R′[r]

r

"Γ[2, 2, 2]" -
b[r]-r b′[r]

2 r2-2 r b[r]

"Γ[2, 3, 3]" -r + b[r]

"Γ[2, 4, 4]" (-r + b[r]) Sin[θ]2

"Γ[3, 3, 2]"
1

r

"Γ[3, 4, 4]" -Cos[θ] Sin[θ]

"Γ[4, 4, 2]"
1

r

"Γ[4, 4, 3]" Cot[θ]

In[ ]:= J = {{Exp[-R[r]], 0, 0, 0},

{0, Sqrt[1 - b[r] / r], 0, 0}, {0, 0, 1 / r, 0}, {0, 0, 0, 1 / (r * Sin[θ])}};

inverseJ = Inverse[J];

J = J // MatrixForm

inverseJ = inverseJ // MatrixForm

riemann := riemann = Simplify[Table[

(inverseJ〚1, i, i〛 * J〚1, j, j〛 * J〚1, k, k〛 * J〚1, l, l〛) *

(D[affine〚i, j, l〛, coord〚k〛 ] - D[affine〚i, j, k〛, coord〚l〛 ] +

Sum[affine〚s, j, l〛 × affine〚i, k, s〛 - affine〚s, j, k〛 × affine〚i, l, s〛,

{s, 1, n}]),

{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}] ]

Out[ ]//MatrixForm=

-R[r] 0 0 0

0 1 -
b[r]

r
0 0

0 0
1

r
0

0 0 0
Csc[θ]

r

Out[ ]//MatrixForm=

R[r] 0 0 0

0
1

1-
b[r]

r

0 0

0 0 r 0

0 0 0 r Sin[θ]

2     wormhole.nb

Printed by Wolfram Mathematica Student Edition



In[ ]:=


Phi[r] 0 0 0

0
1

1-
b[r]

r

0 0

0 0 r 0

0 0 0 r Sin[θ]

Out[ ]= 
Phi[r], 0, 0, 0, 0,

1

1 -
b[r]

r

, 0, 0, {0, 0, r, 0}, {0, 0, 0, r Sin[θ]}

In[ ]:= riemann〚3, 4, 3, 4〛 // FullSimplify

Out[ ]=

b[r]

r3

In[ ]:= listriemann :=

Table[If[UnsameQ[riemann〚i, j, k, l〛, 0], {ToString[R[i, j, k, l]], riemann〚i, j, k, l〛}] ,

{i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, k - 1}]

In[ ]:= TableForm[Partition[DeleteCases[Flatten[listriemann], Null], 2], TableSpacing  {2, 2}]

Out[ ]//TableForm=

R[1, 2, 2, 1] 1 -
b[r]

r
 

(b[r]-r b′[r]) R′[r]

2 r2-2 r b[r]
+ R′[r]2 + R′′[r]

R[1, 3, 3, 1]
(r-b[r]) R′[r]

r2

R[1, 4, 4, 1]
(r-b[r]) R′[r]

r2

R[2, 1, 2, 1]
b[r] R′[r]-2 r R′[r]2-2 r R′′[r]+r -b′[r] R′[r]+2 r R′[r]2+R′′[r]

2 r2

R[2, 3, 3, 2]
b[r]-r b′[r]

2 r3

R[2, 4, 4, 2]
b[r]-r b′[r]

2 r3

R[3, 1, 3, 1]
(r-b[r]) R′[r]

r2

R[3, 2, 3, 2] -
b[r]-r b′[r]

2 r3

R[3, 4, 4, 3] -
b[r]

r3

R[4, 1, 4, 1]
(r-b[r]) R′[r]

r2

R[4, 2, 4, 2] -
b[r]-r b′[r]

2 r3

R[4, 3, 4, 3]
b[r]

r3
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In[ ]:= ricci := ricci = Simplify[Table[Sum[riemann〚i, j, i, l〛, {i, 1, n}], {j, 1, n}, {l, 1, n}] ]

listricci :=

Table[If[UnsameQ[ricci〚j, l〛, 0], {ToString[R[j, l]], ricci〚j, l〛}] , {j, 1, n}, {l, 1, j}]

TableForm[Partition[DeleteCases[Flatten[listricci], Null], 2],

TableSpacing  {2, 2}] // FullSimplify

Out[ ]//TableForm=

R[1, 1]
R′[r] (4 r-3 b[r]-r b′[r]+2 r (r-b[r]) R′[r])+2 r (r-b[r]) R′′[r]

2 r2

R[2, 2]
r b′[r] (2+r R′[r])-2 r3 R′[r]2+R′′[r]+b[r] (-2+r (R′[r] (-1+2 r R′[r])+2 r R′′[r]))

2 r3

R[3, 3]
b[r]+r b′[r]+2 r (-r+b[r]) R′[r]

2 r3

R[4, 4]
b[r]+r b′[r]+2 r (-r+b[r]) R′[r]

2 r3

In[ ]:= scalar = Sum[standardmetric〚i, i〛 * ricci〚i, i〛, {i, 1, n}] // FullSimplify

Out[ ]=

(-4 r + 3 b[r]) R′[r] + b′[r] (2 + r R′[r]) - 2 r (r - b[r]) R′[r]2 + R′′[r]

r2

In[ ]:= einstein := einstein = Simplify[ricci - (1 / 2) * scalar * standardmetric]

In[ ]:= listeinstein := Table[

If[UnsameQ[einstein〚j, l〛, 0], {ToString[G[j, l]], einstein〚j, l〛}] , {j, 1, n}, {l, 1, j}]

In[ ]:= TableForm[Partition[DeleteCases[Flatten[listeinstein], Null], 2],

TableSpacing  {2, 2}] // FullSimplify

Out[ ]//TableForm=

G[1, 1]
b′[r]

r2

G[2, 2]
-b[r]+2 r (r-b[r]) R′[r]

r3

G[3, 3]
(1+r R′[r]) (b[r]-r b′[r]+2 r (r-b[r]) R′[r])

2 r3
+

(r-b[r]) R′′[r]

r

G[4, 4]
(1+r R′[r]) (b[r]-r b′[r]+2 r (r-b[r]) R′[r])

2 r3
+

(r-b[r]) R′′[r]

r
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