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1 Problem One
For notation purposes, if q is a variable, then [q] represents the units of that variable. For convention we will use [rad] to denote
units of radians, even though these are “natural” units that are dimensionless. The sole reason is a practical one: It warns us
that we cannot (at least without converting first) use degrees. Then:

(a) P = σA =⇒ [P ] = [σ][A] = [MPa m2] = [MN]

(b) M = σI

y
=⇒ [M ] = [σ][I]

[y] = [MPa mm4 mm−1] = [MPa mm3] = [N mm]

• We can show this via:
1MPa× 106Pa

MPa ×
1N m−2

1Pa = 106N m−2 (1)

and
1mm3 = 10−6m2 mm (2)

so when we multiply these two together, we get:

[MPa mm3] = [N mm] (3)

(c) E = M

φI
=⇒ [E] = [M ]

[φ][I] = [N mm2 rad−1 mm−4] = [N rad−1 mm−2] = [MPa rad−1] (Note that we have used the fact

that [mm2] = [10−6m2])

(d) L = 2W
σεA

=⇒ [L] = [W ]
[σ][ε][A] = [J MPa−1 m−2] = [µm] (Note here we have used the fact that 1MPa m2 = 106J m−1.)

(e) fy = Vss

Avdvφs cot θ =⇒ [Vs] = [Vs][s]
[Av][dv] = [N mm mm−2 mm−1] = [N mm−2] = [MPa]
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2 Problem Two
Refer to the diagram below, drawn on a 1 : 20 exact scale (note that force vectors are not drawn to scale):
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Note that all angles are known exactly. We have:

tanα = 800mm
400mm = 2 =⇒ α = 63.435◦ (4)

tan β = 250mm
750mm = 1

3 =⇒ β = 18.4349◦ (5)

We have seven unknown forces, so the fundamental theorem of algebra tells us that we need seven different equations. Balancing
forces in the x and y direction for nodes C and D give rise to 2× 2 = 4 equations. Balancing forces on the weight gives one
equation. The last two equation relates tensions on the same string, giving1:

FW D = FDW (6)
FCD = FDC (7)

Balancing forces on the weight, we have: ∑
Fy = 0 =⇒ FW D = mg (8)

Balancing forces on the node D, we have: ∑
Fx = 0 =⇒ FDC = FDE cosβ (9)∑
Fy = 0 =⇒ FDE sin β = FDW (10)

Balancing forces on the node C, we have:∑
Fx = 0 =⇒ FCD = FCA cosα+ FCB cosα (11)∑
Fy = 0 =⇒ FCA sinα = FCB sinα (12)

This gives us our seven equations. Substituting equation (6) into (8) gives:

FDW = mg (13)

To solve for FDE , we substitute in equation (13) into (10) to get:

FDE = mg

sin β (14)

1See the solution in question three for a rigorous proof.
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To solve for FDC = FCD, we can substitute equation (14) into (9) to get

FDC = FCD = mg cosβ
sin β (15)

From equation (12), we see that since sinα 6= 0, we can cancel it out and determine that the tensions in the two diagonal
strings are equal:

TCB = TCA (16)
Substituting in (16) and (15) into (11) gives:

FCA = FCB = mg cosβ
2 cosα sin β (17)

Letting m = 73kg and g = 9.81m s−2, we can summarize our results:

• FW D = FDW = mg = 7.16× 102N

• FDE = mg

sin β = 2.26× 103N

• FDC = FCD = mg

tan β = 2.15× 103N

• FCA = FCB = mg

2 cosα tan β = 2.40× 103N
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3 Problem Three
At first glance, it may appear that this problem has 2 + 3 + 2 + 3 = 10 unknown forces and thus 10 different equations, but
there is a much more elegant method to solve this that relies on the following lemma:

Lemma: If a massless rope is in equilibrium and the only external forces are either acting on the ends of the rope or act
perpendicular to the rope, then the tension throughout the rope will be constant.

Proof: We consider an arbitrary differential segment of the rope and without loss of generality, suppose the ends are at x and
x+ dx respectively. Since the net force is zero, we can balance forces to yield

T (x) = T (x+ dx) =⇒ dT = 0 (18)

Since there is nothing inherently special about the coordinate x, the change in tension must be zero everywhere. Perhaps you
aren’t totally convinced, at least in the case where there is a perpendicular force. In this case, we can balance moments with
respect to the center of curvature, causing any perpendicular forces to have a net moment of zero. By a moment balance, the
two tensions must be equal (since the tension force is perpendicular to the radius of curvature vector).

We can use this powerful lemma to show that since there are only two ropes in this system, there are only two unknown forces
T1 and T2, as illustrated below in a simplified schematic, where the two ropes have been drawn:

T1

T2

W

A

B

We can draw the forces acting on pulley A and B. Note that the lengths of the vectors are not drawn to scale.

T1 T1

T2

W

A

T1 T1

T2

B

Balancing forces in the vertical direction for pulley A, we have:

T2 + 2T1 = W (19)
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We can now look at the forces acting in the vertical direction on pulley B. Since the pulley is in equilibrium, we must have:

T2 = 2T1 (20)

Substituting equation (20) into (19) gives:

T1 = W

4 (21)

and substituting this back into equation (20) gives:

T2 = W

2 . (22)

Second Solution: We can also solve this problem without balancing forces at all! A system is in equilibrium when the energy
is minimized.

dE = dUgravity + dWrope (23)
This includes both the gravitational potential energy and the work done by the rope. Essentially, a tiny displacement of any
parameter wouldn’t involve a change in the potential energy (at least to first order). More formally, if q is a parameter describing
a degree of freedom, then:

dE
dq = 0 (24)

This is analogous to a ball coming to rest at the bottom of a hill, and a total (instead of partial) derivative is written since this
pulley system only has one degree of freedom. Therefore, if we displace pulley A upwards by some dy, then:

dE = 0 (25)

Let us apply this trick to this problem. Suppose pulley A moves up by a distance dy. Then pulley B would move down by a
distance dy due to conservation of length of the red rope. By moving up by dy, pulley A has freed up 2 dy metres of blue rope
for pulley A. This is equivalent to the blue rope being pulled a distance of 2 dy along the edge of pulley A.

We assume the displacement is very small such that the force of tension do not have time to change, and apply this trick,
known as the principle of virtual work on the first pulley. Thus, the red rope does a work dWred = T2 dy. The blue rope does
a work dWblue = 2T1 dy, and the change in gravitational potential energy is dUgravity = W dy. Substituting this into equation
(25) gives:

2T1 dy + T2 dy = W dy =⇒ 2T1 + T2 = W (26)
Applying the same principle to pulley B. Since the second pulley moves down by dy, pulley B has freed up 2 dy metres of blue
rope, causing a displacement of that length. Note that the work done by the red string is now in the opposite direction (since
displacement is antiparallel to the direction of the tension) so the work done is negative. Applying equation (25) again, we get

2T1 dy + (−T2 dy) = 0 =⇒ T2 = 2T1 (27)

Notice that these are the exact same formulas (19) and (20) derived with a forces approach, and the systems of equation can
be solved in the same way.
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4 Problem Four
(a) We draw a systems diagram, where all lengths are drawn to scale:

O

A B

TOA TOB

mg

12m

20m

12m

20m
α α

x

y

First note that this system is symmetric across the y-axis, so we can expect TOA = TOB , but this isn’t difficult to prove. We
can calculate:

α = tan−1
(

12
20

)
= 30.96◦ (28)

Then balancing forces in the x direction:
TOB cosα = TOA cosα (29)

Since the cosα cancel out, we see that this indeed implies TOA = TOB . In the y direction:

TOA sinα+ TOB sinα = mg (30)

Using the fact that the two tension forces are equal, we have:

TOA = TOB = mg

2 sinα = 1335N (31)

Where we have let m = 140kg and g = 9.81m s−2. We can verify if this makes sense. Consider the case where α → 0, then
the tension would tend to infinity, since the wires would be horizontal and would need an extremely high tension to give rise to
a certain vertical force. Similarly, if α = 90◦, then the two ropes would share the weight of the traffic light.

(b) We can similarly draw another diagram:

O

A B

C D

TOD

TOC

TDO

TDB
TDC

mg

20m 20m

17m

E
F

x

y

Similar to part (a), we can abuse the horizontal symmetry so that we only need to draw the free body diagrams for nodes O
and node D. Similar to problem two, we use the property that TOD = TDO to simplify our problem even more.

For nodes O and D, we can write two equations each balancing forces in the x and y directions. We have four unknown forces,
TOC , TOD, TDB , and TDC . However, there are two unknown angles: ∠FOD and ∠BDE. We can calculate these angles
using some trigonometry since we know that

OD = DB = 1
2
√

202 + 122 = 11.662m (32)
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As a result (and adding an extra angle for notation sake):

α ≡ ∠FOD = sin−1
(

17/2
11.66

)
= 46.792◦ (33)

β ≡ ∠BDE = cos−1
(

20− 17/2
11.66

)
= 9.5612◦ (34)

γ ≡ ∠EDO = 90◦ − β = 80.4388◦ (35)

Note that we have provided γ only for reference. For all final answers, we will be representing the angles in terms of α or β.
Balancing forces on O, we have: ∑

Fx = 0 =⇒ TOD sinα = TOC sinα (36)∑
Fy = 0 =⇒ mg = TOD cosα+ TOC cosα (37)

Balancing forces on D, we have: ∑
Fx = 0 =⇒ TDB cosβ = TDC + TDO cos γ (38)∑
Fy = 0 =⇒ TDB sin β = TDO sin γ (39)

From equation (36), we can see that TOD = TOC , so we can isolate for TOD in (37) to get:

TOD = TOC = mg

2 cosα = 1003N (40)

Using equation (32), we can substitute for TDO in equation (39) to get:

TDB = TOD
sin γ
sin β = mg sin γ

2 cosα sin β = mg

2 sin β = 4140N (41)

where we have related γ and α using (35). Finally, we can solve for TDB via substituting everything into equation (38):

TDC = TDB cosβ − TOD cos γ = mg cosβ
2 sin β − mg cos γ

2 cosα (42)

Simplifying, we get:
TDC = mg

2 (cotβ − tanα) = 3350N (43)

Since we have two wires (the top two diagonal ones) exceeding a tensile force of 4kN, the second design will not be feasible.

Elegant Solution: Note that the question asks whether or not the second design is feasible, not the tensions of every rope.
We just need to find the cable that has the highest tension force and calculate that tension. If that is smaller than 4kN, then
all tensile forces will be smaller than that.

We know it cannot be cables OD or OC since by attaching a cable to the middle makes their angle steeper with respect to the
horizontal. From our discussion in part (a), we saw that the steeper the angle, the smaller the tension force.

We can also rule out the tension in the cable CD, since this cable combined with the horizontal component of cable OD is
balanced by the horizontal component of cable DB. As a result, the horizontal component of tension for DB is greater than
the tension in CD. We can easily calculate this tension force by drawing a free body diagram of the traffic light, OC, OD,
and CD, combined into one. This gives you one object pulled up by two cables and it again is the same scenario is part (a).
We simply need to determine α like we did earlier and apply equation (31) to get the result of equation (43).
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5 Problem Five
Let us consider an arbitrary setup which we will use for both parts.

x

y

mg

N

ffr

P

mg cos θ1

mg sin θ1

θ2

θ1

(a) To begin, we can balance forces in the x and y directions, giving:∑
Fx = 0 =⇒ ffr +mg sin θ1 = P cos θ2 (44)∑
Fy = 0 =⇒ N + P sin θ2 = mg cos θ1 (45)

We can solve for N and ffr and relate them in the inequality:

ffr ≤ µsN =⇒ P cos θ2 −mg sin θ1 ≤ mgµs cos θ1 − Pµs sin θ2 (46)

And solving for P , we get:
P ≤ mgµ cos θ1 + sin θ1

µ sin θ2 + cos θ2
(47)

Thus, the box will start moving if:
P > mg

µ cos θ1 + sin θ1

µ sin θ2 + cos θ2
= 779N. (48)

(b) To find the optimal angle θ2 such that Pmin is minimized, we need to minimize the expression in (48). The angle θ2 only
appears in the denominator, so we just need to maximize the expression

µ sin θ2 + cos θ2 (49)

We use the following property considering the linear combinations of trigonometric functions:

Property: Given a function f(x) = B sin x + C cosx, the maximum value is ymax =
√
B2 + C2 at the value of

x = tan−1 (B
C

)
. Here, B and C are positive nonzero constants.

Proof: We shall do this without calculus. Let us assume the linear combination gives another sinusoidal function f(x). We
can then demand that:

kf(x) = kB sin x+ kC cosx (50)
We wish to get this in the form of:

cos y sin x+ sin y cosx = sin(x+ y) (51)
and we can do this by demanding that:

kB = cos y (52)
kC = sin y (53)

Dividing through gives us:
y = tan−1

(
C

B

)
(54)
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Note that we also have sin2 y + cos2 y = 1, which implies:

k2 (B2 + C2) = 1 (55)

Combining everything together into equation (50), we get:

f(x) =
√
B2 + C2 sin

(
x+ tan−1

(
C

B

))
(56)

where the amplitude is
√
B2 + C2 and the corresponding x is shifted to a position

x = π

2 − tan−1
(
C

B

)
= tan−1

(
B

C

)
(57)

We can now solve the problem. Substituting this value into (48), we get:

P > mg
µ cos θ1 + sin θ1√

µ2 + 1
= 772N (58)

at an angle of:
θ2 = tan−1 µ = 36.9◦. (59)

Elegant Solution: We can skip all this level of abstractness by looking at a beautiful geometric argument. Suppose we add
the normal and friction force vectors into a single force from the ground Fground. Then we add the gravitational force mg and
the applied force P into a single force vector as well.

mg

N

ffr

P

φ

φ
θ1

θ1

This system now effectively has two forces and at equilibrium the two forces must coincide with each other. At the minimum
P needed, the static friction force takes on its maximum value ffr = µsN and thus:

tanφ = µN

N
= µ (60)

Notice that P can lie anywhere on the dotted line since the normal force is dependent on it. The magnitude of the force is
proportional to the length of the vector. The motivation behind this is that it gives a nice geometric interpretation of

∑ ~F = 0
to become “adding all vectors tip to tail forms a closed loop.”

To minimize P , we need to minimize the distance from the tip of the m~g vector and the diagonal line formed by ~Fground. Since
mg is fixed, the shortest path from a point to a line is when it is perpendicular to it, at which case mg forms the hypotenuse
of a right triangle with sides mg, P , and the dotted line. Trigonometric ratios then tells us:

Pmin = mg sin(θ1 + φ) = mg sin
(
θ1 + tan−1 (µ)

)
(61)

We arrived at the correct answer in only two short steps such that with enough practice, one could possibly write down the
final answer straight away after seeing the problem! One thing to also note is that we didn’t have a coordinate axes, since we
are working with coordinate free parameters.

Another Geometric Solution: Instead of asking at what angle the magnitude of P is minimized, we can ask the opposite: At
which angle(s) is P maximized? If we can then create a geometric argument that P is symmetric between these two points,
then we can claim that P is minimized between these two maximum points.
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There are two ways to do this: We can easily find when the denominator of 48 is minimized by finding the roots, which leads
to:

α1 = − tan−1
(

1
µ

)
, α2 = π − tan−1

(
1
µ

)
(62)

which leads to an optimal angle of:
θ1,optimized = α1 + α2

2 = π

2 − tan−1
(

1
µ

)
(63)

But what does this mean geometrically? Does α1 and α2 have some sort of geometric representation? The answer of course
is yes!

Intuitively, we can interpret an infinite minimum force as: “No matter how hard I push or pull on this box at this certain angle,
it will never budge.” In order for this to happen, the normal force, friction force, and applied force will all tend to infinity.
The gravitational force however, will not, and in a sense be negligible.2 We then can draw a free body diagram without the
gravitational force.

x

y

N

ffr

P

|θ2|

θ1

Balancing forces in the y and x direction gives us:∑
Fy = 0 =⇒ N = P sin |θ2| (64)∑
Fx = 0 =⇒ Nµ = P cos |θ2| (65)

(66)

where we have let friction take on its maximum value of µN as it is on the verge of slipping. Then dividing through, we get:

1
µ

= tan |θ2| =⇒ θ2 = − tan−1
(

1
µ

)
(67)

Note the sign convention here. θ2 is negative since it points downwards with respect to the slope. What about the other angle?
Well in our analysis, we never made assumptions about whether P is a pushing or pulling force. If we assume it is a pushing
force, then the sign of P becomes negative and the angle can be positive.

The force vector however, will be drawn in the exact same way, and as a result we can say that “Pulling on the block at an
angle of −|θ2| is equivalent to pushing on the block at an angle π− |θ2|.” Thus, the two angles are given by equation (62) and
taking the average yields the optimal angle given in equation ()67).

However, this solution is based on the assumption that the system has some inherent symmetry to it. Of course, it is very easy
to show this symmetry with trigonometry, algebra, or calculus, but can we also answer this geometrically? The main idea relies
on the fact that the minimum force P is perpendicular to the force from the ground ~N + ~ffr, which involves a certain symmetry
as a change in the angle in either direction would cause the force from the ground to change by the same length.

2This is in a sense, identical to how doorstops work, where the angle is chosen such that an increase in the applied force will increase the normal
force in such a way that the friction force will perfectly counterbalance it.
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