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1 Problem One: Free Vibration
(a) Let us first draw a free body diagram of the person-platform system (where the person is represented by a box) at maximum
tension:

T T

(M +m)g (M +m)a

where we have applied D’alembert’s principle at the maximum elongation. Thus, the system is in equilibrium and balancing
forces in the vertical direction gives:

2T = (M +m)g + (M +m)a (1)

where m is the mass of the person and M is the mass of the platform. We can also draw the free body diagram of the person:

F

mamg

Balancing forces yet again gives:
mg +ma = F (2)

where F is the force from the ground. Solving for F and then substituting it into equation (1) gives:

2T = (M +m)g + (M +m)F −mg
m

=⇒ F = m

M +m
(2T ) (3)
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The tension force can be calculated using Hooke’s Law:

T = EAε = 3927N (4)

where E = 10, 000MPa is the Young’s Modulus, A = πd2

4 is the cross sectional area of the rope with diameter d = 10mm, and
the strain is ε = 15

3000 . Using this tension force, we get:

F = 3140N (5)

(b) First, we can calculate the spring constant of each rope to be:

k = EA

L0
= 261, 799N m−1 (6)

Then the total energy stored in both ropes is:

W = 2 ·
(

1
2k∆L2

)
︸ ︷︷ ︸
energy of each

= 58.9J (7)

We can determine the stress in each rope to be:
σ = Eε = 50MPa (8)

and thus the safety factor as:
f = σult

σ
= 1.200 . (9)

While it won’t break in an ideal world, this might not be the best design!

(c) We can treat the two ropes as one rope just as long but with double the area. Since the spring constant k = EA/L scales
linearly with area, the effective spring constant is:

keff = 2k (10)

We can then plug this into the formula for natural frequency to get:

f = 1
2π

√
2k

m+M
= 8.14Hz . (11)
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2 Problem Two: Poisson’s Ratio
(a) High tensile steel has a yield strength of σyield = 1650MPa and a Young’s Modulus of E = 200, 000MPa. The longitudinal
strain εx needed is given by:

σyield = Eεx =⇒ εx = σyield
E

= 8.25× 10−3 (12)

This gives the radial strain as εy = εz = −µεl. And thus the area changes by a factor of:

∆A
A

= εyεz = µ2ε2x (13)

Note that ∆A denotes a decrease in area and the original area is A = 9mm2. The force associated with this is:

F = σyield(A−∆A) = σyieldA(1− µ2ε2x) = 14, 850N (14)

Note that the factor of 1− µ2ε2x is so small, it doesn’t affect the final answer (after rounding to four sig digs).

(b) Using the definition for Poisson’s ratio, we can determine the transverse strain as:

εy = εz = −µεx = 2.48× 10−3 (15)

The change in volume is then:

∆V
V

= ∆(xyz)
xyz

= (1 + εx)(1 + εy)(1 + εy)− 1 = (1 + εx)(1− 0.3εx)2 − 1 (16)

so the change in volume is:
∆V = xyz

∆V
V

= 46.9mm3 (17)

(c) We want ∆V
V = 0, or:

(1 + εx)(1− µεx)2 = 1 (18)

Solving for µ gives:

µ =
1−

√
1

1+εx

εx
(19)

Substituting in εx, we get: µ = 0.497 . This seems pretty close to µ = 0.5 and indeed, if the strain is small enough it will
always hover around this region. We can do this by taking the limit as εx → 0. Since this is not ESC194, I hope I can get away
with a non-rigorous way of doing this by taking the first order binomial expansion:

µ = 1− (1 + εx)−1/2

εx
≈

1− (1− 1
2εx)

εx
= 1

2 (20)

Intuitively, this comes from the fact (which comes from error analysis, which in turn comes from the derivative of a square)
that:

∆A
A

= 2∆r
r

(21)

where r = y = z is the width.
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3 Problem Three
Let’s first draw a good diagram with well chosen variables:

2/x

h

x x0 1.5x0.5x
1.5x− x0

y z

a

2/a

We want the area of the shaded region to equal f = 0.02 and the dimensions are picked such that the areas are normalized
(e.g. equal to one). We have three equations:

y + z = 1.5x− x0 (22)
y

h
= a2

4 (23)

z

h
= x2

4 (24)

where the last two equations comes from similar triangles, by breaking the middle triangle into two right angled ones, then
comparing the side lengths of each half with the red triangle and the blue triangle. Using equation (22), we can rewrite (23)
as:

1.5x− x0 − z
h

= a2

4 (25)

and combining it with equation (24) gives:

1.5x− x0 −
hx2

4 = ha2

4 =⇒ h = 1.5x− x0

x2/4 + a2/4 (26)

We demand that the area of the triangle be equal to f = 0.02:

A = 1
2(1.5x− x0)h = f =⇒ 1

2(1.5x− x0) 1.5x− x0

x2/4 + a2/4 = f (27)

which we can solve:

(1.5x− x0)2 = f

2 (x2 + a2) (28)

4.5x2 − 6xx0 + 2x2
0 = fx2 + fa2 (29)

(4.5− f)x2 + (−6x0)x+ (2x2
0 − fa2) = 0 (30)

4.48x2 − 9720x+ 5246208 = 0 (31)

and using the quadratic equation gives us:
σallow ≡ 1008MPa, 1161MPa (32)

The first solution is not physical, since 1.5σallow doesn’t even cross into the blue triangle region. Therefore, the answer is
σallow = 1161MPa and the factor of safety is:

FOS = 1800
1161 = 1.550. (33)
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4 Problem Four
(a) Here, we essentially have two rods in series and we can no longer assume that each rod has the same strain. However, the
two rods will have the same force, which we can use to calculate the stress:

Fmax = σ1A1 = σ2A2 =⇒ σ1d
2
1 = σ2d

2
2 (34)

where A1 > A2. As a result, σ1 < σ2 = σyield. Similarly, we can then calculate the strain in each part of the nonuniform rod:

Eε1A1 = Eε2A2 (35)

We can summarize the results:

σ2 = σyield (36)

σ1 = σyield

(
d2

d1

)2
(37)

ε2 = σyield
E

(38)

ε1 = σyield
E

(
d2

d1

)2
(39)

so the elastic energy stored in the rope is given by:

W = V1

2
σ2

yield
E

(
d2

d1

)4
+ V2

2
σ2

yield
E

(40)

which simplifies to:

W = πL

8
σ2

yield
E

(
d2

1

(
d2

d1

)4
+ d2

2

)
(41)

The total change in length is:

∆L = L(ε1 + ε2) = Lσyield
E

(
1 +

(
d2

d1

)2
)

(42)

Conservation of energy gives:

mg(h+ ∆L) = W =⇒ h = 1
mg

πL

8
σ2

yield
E

(
d2

1

(
d2

d1

)4
+ d2

2

)
− Lσyield

E

(
1 +

(
d2

d1

)2
)

= 0.360m (43)

(b) If dropping the weight higher than part (a), we will start to see plastic deformation. Since the two wires are made of the
same material, and have the same tension but different areas, the thinner (bottom) wire will experience a larger stress. By
Hooke’s Law σ = σε, the bottom wire will experience a larger strain as well. Since the strain of the bottom wire is larger than
the top, it would experience yielding first.

While the bottom wire is yielding, the strain increases without changing the stress and thus the force is unchanged. This implies
two things. First, the top wire stays static since its stress is also unchanged. Because the force experienced by the weight is
constant, it will follow a parabolic path.

Once the weight stops at the bottom of its parabolic trajectory, the bottom wire will deform according to Hooke’s Law. But
because the bottom wire has elongated beforehand, it does not go back to its original length. We are in fact able to calculate
just how much this change of length is. Suppose the weight is dropped from a height H = h+ ∆h where h is as determined
above. Then there would be some leftover kinetic energy 1

2mv
2 = mg∆h once the bottom wire starts experiencing yielding.

Conservation of energy gives:

mg(∆h+ ∆Lextra) = F∆Lextra = EA

L
∆L︸ ︷︷ ︸

constant

(∆Lextra) =⇒ ∆h = 364∆L (44)

We won’t analyze in much detail, but after the yielding, the stress will start increasing again until the upper wire starts yielding
and a similar thing occurs: The tension force remains constant, so the bottom wire will maintain the same length while the
upper wire elongates.
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(c) This problem got me at first... It may be tempting to say that in the new case (with one long thin wire) will break first
because it cannot store as much energy as before so for a given height, the strain needs to be longer to compensate for it, thus
reaching its maximum elongation faster.

This reasoning is false because it doesn’t mention how the energy is distributed. For example, perhaps the majority of the
energy in the old case could be concentrated in the thin wire. Since the old thin wire has a smaller volume than the new thin
wire, it will break first. This in reality, is exactly what happens and we are going to prove it.

First and perhaps the easiest proof is by directly plugging d1 = 6mm in equation (43) to give a maximum height of 0.631mm.
As a result, the new setup can withstand a drop from nearly twice as high and still be in the elastic region! This equation still
applies because we can model one long wire as two identical wires half as long. That equation can be a bit long so it might
not be obvious why this number increased, but it becomes more clear if we look at two springs in series with spring constants
k1 and k2 such that:

W = 1
2k1x

2
1 + 1

2k2x
2
2 (45)

and
k1x1 = k2x2 (46)

which we can combine to get:

W = 1
2k2x

2
2

(
1 + k2

k1

)
(47)

As the spring constant of the upper wire k1 increases, the factor 1 + k2/k1 increases. And for a given energy W , this means
the displacement x2 decreases. (If you want to view this in terms of strain, you can let k2 = EA/L and let the strain to be
x2/L, which still decreases.)

Second, it is also helpful to look at an extreme case where the area of the top half is huge, say on the order of magnitude of
the ceiling of a room. Then hopefully intuitively one can see that practically speaking, it’s possible to completely ignore the
energy stored in the top wire. For a similar reason when doing my pendulum lab for physics, I don’t analyze the strain caused
by my tiny mass on the roof, even if I used something elastic for my string!

I will show why the above is true quantitatively and rigorously by looking at the effective spring constant. Consider two springs
with spring constants of k1 and k2 connected in series where spring one is fixed at one end.Suppose the free end of the first
spring displaces by ∆x1 and the other end of spring 2 displaces by ∆x2 relative to the contact point. Since the tension is
constant throughout, we must have

k1∆x1 = k2∆x2 (48)
We want to find the effective spring constant keff such that the force can also be written as:

k2∆x2 = keff(∆x1 + ∆x2) (49)

Making the substitution ∆x1 = k2
k1

∆x2, we can cancel out factors of ∆x2 to get:

k2 = keff

(
k2

k1
+ 1
)

=⇒ keff = k1k2

k1 + k2
(50)

Taking the approximation where k1 � k2, we get:
keff = k2 (51)

For the nonuniform wire, the effective spring constant is very nearly equal to the spring constant of the bottom wire. Therefore,
the old system behaves as if there was only a 1 meter long wire while the new system behaves as a 2 meter long wire. Therefore
for a given strain, the new case can extend about twice as long as the old case, hence explaining the rough factor of 2 we saw
earlier.

One final thing for intuition: Recall that the effective spring constant equation resembles finding the effective resistance of two
resistors in parallel. Since a circuit analogy might be more intuitive for others, I have included this bonus. A circuit and a
system of springs actually have a lot in common. Here are the analogies one can make:

spring constant ⇐⇒ resistance (52)
displacement ⇐⇒ current (53)

potential energy ⇐⇒ electrical power (54)
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There are others involving inductors and capacitors, but these are the relevant ones for now. As a result, this question is exactly
equivalent to this: Consider an appliance made of two resistors R and r connected in parallel, and needs a total power of P to
run. We want to minimize the current going through resistor r. Would letting R� r or R = r be a better choice? If R� r,
then the majority of the current will flow through the branch with resistor r. Since we want to minimize this flow, then it makes
sense for R = r. This completely agrees with the argument earlier that the one long thin wire will last longer.
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