CIV102: Problem Set \#8

QiLin Xue
qilin.xue@mail.utoronto.ca

TA: Michel

November 18, 2020

1 Problem One

(a) We first perform the analysis for the beam on the left. Let the two reaction forces be A and C. Note that there are no horizontal forces from A since the net horizontal force is zero. Then:

$$
\begin{equation*}
A+C=P \tag{1}
\end{equation*}
$$

and balancing torques:

$$
\begin{equation*}
P\left(\frac{3 L}{4}\right)=C(L) \Longrightarrow C=\frac{3}{4} P \tag{2}
\end{equation*}
$$

and similarly $A=\frac{1}{4} P$. The shear force diagram can be drawn as:

and the moment diagram:

and the curvature diagram:

The deflection at B with respect to the tangent line at A is:

$$
\begin{equation*}
\delta_{B A}=\bar{x}_{B A} \int_{B}^{A} \phi(x) \mathrm{d} x=\left(\frac{1}{3} \frac{3 L}{4}\right)\left(\frac{1}{2} \frac{3 L}{4} \frac{3}{16} \frac{P L}{E I}\right)=\frac{9}{512} \frac{P L^{3}}{E I} \tag{3}
\end{equation*}
$$

The deflection at C with respect to the tangent line at A is:

$$
\begin{equation*}
\delta_{C A}=\left(\frac{2}{3} \frac{L}{4}\right)\left(\frac{1}{2} \frac{L}{4} \frac{3}{16} \frac{P L}{E I}\right)+\left(\frac{L}{4}+\frac{1}{3} \frac{3 L}{4}\right)\left(\frac{1}{2} \frac{3 L}{4} \frac{3}{16} \frac{P L}{E I}\right)=\left(\frac{1}{256}+\frac{9}{256}\right) \frac{P L^{3}}{E I}=\frac{5}{128} \frac{P L^{3}}{E I} \tag{4}
\end{equation*}
$$

The angle the beam makes at A is given by:

$$
\begin{equation*}
\theta_{A} \cong \frac{5}{128} \frac{P L^{2}}{E I} \tag{5}
\end{equation*}
$$

so the deflection of B with respect to the initial position is:

$$
\begin{equation*}
\Delta_{B}=\frac{3}{4} L \theta_{A}-\delta_{B A}=\frac{15}{512} \frac{P L^{3}}{E I}-\frac{9}{512} \frac{P L^{3}}{E I}=\frac{3}{256} \frac{P L^{3}}{E I} \tag{6}
\end{equation*}
$$

(b) Again, since there are no net horizontal forces, the reaction force at the left end is completely vertical, which we denote as A which is equal and opposite to P. It also exerts a counterclockwise moment with a magnitude equal to $M_{A}=P L$. Therefore, the shear force and moment diagrams are:

and the moment diagram:

For the curvature diagram, we have:

where the varying moment of inertia was taken into consideration. The deflection of point C is then given as:

$$
\begin{equation*}
\delta_{C A}=\bar{x}_{1} A_{\text {right triangle }}+\bar{x}_{2} A_{\text {rectangle }}+\bar{x} A_{\text {top left triangle }} \tag{7}
\end{equation*}
$$

where we have broken up the curvature diagram into three shapes by breaking the trapezoidal shape into a rectangle and a
triangle. Thus:

$$
\begin{align*}
\delta_{C A} & =\left(\frac{2}{3} \frac{L}{2}\right)\left(\frac{1}{2} \frac{L}{2} \frac{1}{2} \frac{P L}{E I_{0}}\right)+\left(\frac{L}{2}+\frac{1}{2} \frac{L}{2}\right)\left(\frac{L}{2} \frac{1}{4} \frac{P L}{E I_{0}}\right)+\left(\frac{L}{2}+\frac{2}{3} \frac{L}{2}\right)\left(\frac{1}{2} \frac{L}{2} \frac{1}{4} \frac{P L}{E I_{0}}\right) \tag{8}\\
& =\left(\frac{1}{24}+\frac{3}{32}+\frac{5}{96}\right) \frac{P L^{3}}{E I_{0}} \tag{9}\\
& =\frac{3}{16} \frac{P L^{3}}{E I_{0}} \tag{10}
\end{align*}
$$

Since A is a horizontal tangent, the displacement of point C is:

$$
\begin{equation*}
\Delta_{C}=\frac{3}{16} \frac{P L^{3}}{E I_{0}} \tag{11}
\end{equation*}
$$

2 Problem Two

We can find the force F exerted by the supports due to symmetry. We have:

$$
\begin{equation*}
25(7)=2 F \Longrightarrow F=87.5 \mathrm{kN} \tag{12}
\end{equation*}
$$

The shear force diagram looks like:

The moment diagram looks like:

Note that the intercepts are at $(1.209,0)$ and $(5.791,0)$, which represent locations where the moment is zero. The center of mass of the beam is:

$$
\begin{equation*}
\bar{y}=\frac{(150)(125 \cdot 300)+(350)(800 \cdot 100)}{800 \cdot 100+125 \cdot 300}=286.17 \mathrm{~mm} \tag{13}
\end{equation*}
$$

from the bottom. The moment of inertia is then:

$$
I=\frac{1}{12}(800)(100)^{3}+(800 \cdot 100)(350-286.17)^{2}+\frac{1}{12}(125)(300)^{3}+(125 \cdot 300)(286.17-150)^{2}=1369.19 \times 10^{6} \mathrm{~mm}^{4}(14)
$$

Therefore, the flexural stiffness is:

$$
\begin{equation*}
E I=4.1076 \times 10^{4} \mathrm{kPa} \mathrm{~m}^{2} \tag{15}
\end{equation*}
$$

and the curvature diagram is simply scaled by the inverse of this:

We can determine the equation of the curve in the middle to be:

$$
\begin{equation*}
\phi(x)=-3.043 \cdot 10^{-4}(x-3.5)^{2}+15.976 \cdot 10^{-4} \tag{16}
\end{equation*}
$$

We can calculate the deflection at point C to be:

$$
\begin{equation*}
\delta_{C, m i d}=\int_{C}^{\mathrm{mid}}=\int_{3.5}^{6}(6-x)\left(-3.043 \cdot 10^{-4}(x-3.5)^{2}+15.976 \cdot 10^{-4}\right) \mathrm{d} x=4.002 \mathrm{~mm} \tag{17}
\end{equation*}
$$

Since the slope at the midpoint is zero, we don't have to do anything else. The beam looks like this:

3 Problem Three

(a) If we ignore P_{B}, then the forces exerted by the two supports A and C as 200 kN each, making the shear force diagram:

and the moment diagram:

We can abuse symmetry here to determine the displacement of point C relative to B as:

$$
\begin{equation*}
\delta_{C B}=\Delta_{B}=\frac{1}{E I}\left(\frac{2}{3}(7)\right)\left(\frac{1}{2}(7)(1400)\right)+\left(7+\frac{7}{2}\right)(7 \cdot 1400)=628 .(83) \mathrm{mm} \tag{18}
\end{equation*}
$$

which is true since the horizontal tangent at the midpoint is zero.
(b) Due to symmetry, the two supports would each exert a force of $P_{B} / 2$. Therefore, the shear force diagram looks like

and the bending moment diagram:

Abusing symmetry once again, the displacement of C relative to B is:

$$
\begin{equation*}
\delta_{C B}=628.83=\frac{1}{E I}\left(\frac{2}{3}(7000)\right)\left(\frac{1}{2}\left(14000^{2}\right) P_{B}\right)=2.2866 P_{B} \tag{19}
\end{equation*}
$$

and solving for P_{B} gives:

$$
\begin{equation*}
P_{B}=275 \mathrm{kN} \tag{20}
\end{equation*}
$$

(c) With $P_{B}=275 \mathrm{kN}$, the forces the two supports exert is:

$$
\begin{equation*}
A_{y}=C_{y}=\frac{1}{2}(200+200-275)=62.5 \mathrm{kN} \tag{21}
\end{equation*}
$$

such that the shear force diagram is:

and the shear force diagram as:

4 Problem Four

The maximum shear force occurs at the ends and it has a magnitude of:

$$
\begin{equation*}
V=\frac{1}{2}\left(5.5 \mathrm{kN} \mathrm{~m}^{-1} \cdot 3.5 \mathrm{~m}\right)=9.625 \mathrm{kN} \tag{22}
\end{equation*}
$$

The maximum shear stress occurs at the center of the beam, which has a moment of area equal to:

$$
\begin{equation*}
Q=A d=\left(90 \cdot \frac{180}{2}\right)\left(\frac{1}{2} 180-\frac{1}{2} \frac{180}{2}\right)=364500 \mathrm{~mm}^{3} \tag{23}
\end{equation*}
$$

The moment of inertia is equal to:

$$
\begin{equation*}
I=\frac{1}{12}(90)\left(180^{3}\right)=43.74 \times 10^{6} \mathrm{~mm}^{4} \tag{24}
\end{equation*}
$$

such that the maximum shear stress is:

$$
\begin{equation*}
\tau=\frac{V Q}{I b}=\frac{(9625)(364500)}{\left(43.74 \times 10^{6}\right)(90)}=0.891 \mathrm{MPa} \tag{25}
\end{equation*}
$$

We can generalize equation 23 to:

$$
\begin{equation*}
Q=A d=(90 \cdot y)\left(\frac{180}{2}-\frac{y}{2}\right)=45 y(180-y) \tag{26}
\end{equation*}
$$

and the shear stress distribution looks like this:

