
ESC194 in a nutshell

QiLin Xue

Fall 2020

Please let me know via discord (Qcumber#4444) if I am missing anything, there exists any typos, and especially if something
is horrendously wrong! Note that this is an unofficial resource and I am not responsible if the use of this study sheet causes you
to fail the midterm, break up with your partner, find your house burned down, or be captured by the North Korean government
to be forced to work on their nuclear missile project which leads to the destruction of the entire world.

Contents
1 Delta-Epsilon Proofs 4

1.1 Brief Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Special Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Limit Theorems 6
2.1 Limit Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Continuity Theorems 6

4 Derivative Theorems 7

5 Features of a Graph 7
5.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Curve sketching 8
6.1 Formally Defining Horizontal Aymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.2 Prelims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.3 Curve Sketching Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Applications of Derivatives 10
7.1 Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.3 Numerical Methods for Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8 Formal Definition of an Integral 11

9 Properties of Integration 13
9.1 Definite Integral Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9.2 Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.3 Integration Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10 Areas and Volumes 16
10.1 Areas Between Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.2 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

11 Misc 17

12 Logarithms and Exponentials 20
12.1 Bounding e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

13 Inverse Trigonometric Functions 22

1



14 Complex Numbers 22

15 Differential Equations 24
15.1 First Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
15.2 Homogeneous Second Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
15.3 Nonhomogeneous Second Order Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2



Index
(1st theorem), 15
(2nd theorem), 15

Absolute Max, 8
Absolute Max in closed interval, 8
Additivity DT:, 7
Additivity Limit Theorem:, 6
area between two curves, 16

Bernoulli Equation, 26

Chain DT:, 7
complementary equation, 27
complex conjugate, 23
Concavity:, 9
Constant DT:, 7
Constant Limit Theorem:, 6
Continuity at a point, 7
Continuity on closed interval, 7
Continuity on open interval, 7
Continuity on the left, 7
Continuity on the right, 7
Cusp:, 9

De Moivre’s Theorem:, 24
definite integral, 12
Definition, 4, 5, 8, 9, 11, 12, 18, 20–22, 24
Differentiability at a point:, 7
Differentiability of function:, 7
Differentiability on closed interval:, 7
Differentiability on open interval:, 7
disk method, 17
doubling time, 25

Example, 4–6, 18
Extreme Value Theorem:, 8

Feynman’s trick of Differentiation, 20
first fundamental theorem of calculus, 14

general exponential, 21
general logarithm, 21

homogeneous second order linear DE, 26
horizontal line test, 18

Idea, 12, 14, 16, 17, 21–23
Inflection point:, 9
integrability, 12
integrand, 12
integrating factor, 25
Intermediate Value Theorem:, 8
inverse functions, 18

linear first order equation, 25
Local Max, 8
logarithm function, 20
logistic model, 25

Mean Value Theorem for Integrals:, 18
Mean Value Theorem:, 8
method of successive bisections, 10
method of undetermined coefficients, 27
modulus, 22

natural logarithm, 20
Newton’s Method, 10
nonhomogeneous second order linear DE, 27
nonlinear first order equation, 26
norm, 12

order properties, 13
Orthogonal trajectories, 25

partition, 12
piecewise continuous, 12
polar representation, 23
Poly DT:, 7
Polynomial Limit Theorem:, 6
Power DT:, 7
Product DT:, 7
Product Limit Theorem:, 6
Proof, 15, 18

QT1: Increasing/Decreasing Test., 9
QT2: First Derivative Test, 9
QT3: Concavity, 9
QT4: Second Derivative Test, 9
Quotient DT:, 7

Rational Function Limit Theorem:, 6
Reciprocal DT:, 7
related rates, 10
Relation to Continuity:, 7
Riemann Sum, 12
Rolle’s Theorem, 8
Root Limit Theorem:, 6

Sandwich Limit Theorem:, 6
second fundamental theorem of calculus, 14
Separable DEs, 24
shell method about the x-axis, 17
shell method about the y-axis, 17
Slant Asymptote:, 9
solids of revolution, 17

Taylor Expansion:, 6
Theorem, 5, 8, 10, 12, 14, 16, 18–20, 24, 26, 27
Triangle Inequality:, 4

u-substitution, 15

variation of parameters, 27
Vertical Tangent:, 9
volume, 17

Warning, 18, 20, 22
washer method, 17

3



1 Delta-Epsilon Proofs
1.1 Brief Overview
The formal definition of the limit lim

x→c
f(x) = L:

Definition: If for any ε > 0, a δ > 0 can be found such that for all 0 < |x− c| < δ, it can be proved that |f(x)−L| < ε,
then lim

x→c
f(x) = L.

The general steps are as follows:

• Write: “For any ε > 0, we want to pick a δ > 0 such that 0 < |x− c| < δ =⇒ |f(x)− L| < ε”

• Start with |f(x)− L| < ε to start getting it under δ control (e.g. by expressing the LHS in terms of δ)

• Pick an arbitrary value of δ = a (if in doubt, choose a = 1) and modify 0 < |x − c| < a to write x in terms of a.
Substitute this back into |f(x)− L| < ε to fully express the LHS in terms of δ.

• Solve for δ in terms of ε and pick δ = min{a, f(ε)}.

A few tips/tricks:

• Apply the Triangle Inequality: |a+ b| ≤ |a|+ |b|.

• Apply the identity: |ab| = |a||b|.

• Apply the inequality: 1
x
>

1
x+ a

for x > 0 given a > 0.

• Remember that 0 < |x− c| < δ =⇒ c− δ < x < c+ δ.

Example 1: (2019 Midterm, Modified) Prove lim
x→2

3x+ 1
(x+ 1)2 = 1.

For any ε > 0, we want to pick a δ > 0 such that 0 < |x− 2| < δ =⇒
∣∣∣∣ 3x+ 1
(x+ 1)2 − 1

∣∣∣∣ < ε. We can start with:

∣∣∣∣ 3x+ 1
(x+ 1)2 − 1

∣∣∣∣ < ε =⇒
∣∣∣∣3x+ 1− (x2 + 2x+ 1)

(x+ 1)2

∣∣∣∣ (1)

=⇒
∣∣∣∣ x− x2

(x+ 1)2

∣∣∣∣ < ε (2)

=⇒
∣∣∣∣x(1− x)
(x+ 1)2

∣∣∣∣ < ε (3)

=⇒
∣∣∣∣ x

(x+ 1)2

∣∣∣∣ |x− 1| < ε (4)

=⇒
∣∣∣∣ x

(x+ 1)2

∣∣∣∣ |(x− 1− 1) + (1)| < ε (5)

=⇒
∣∣∣∣ x

(x+ 1)2

∣∣∣∣ (|x− 2|+ |1|) < ε (6)

=⇒
∣∣∣∣ x

(x+ 1)2

∣∣∣∣ (δ + 1) < ε (7)

(8)

We can set δ = 1. If this is the case then:

0 < |x− 2| < 1 =⇒ 1 < x < 3 ⇐⇒ 2 < x+ 1 < 4 (9)
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We can bound the denominator |(x + 1)2| by its lower bound 22 = 4 and the numerator |x| by its upper bound of 3,
which we can substitute back in to get:∣∣∣∣ x

(x+ 1)2

∣∣∣∣ (δ + 1) < 3
4(δ + 1) ≤ ε =⇒ δ ≤ 4

3ε− 1 (10)

Thus, we can pick:
δ = min{1, 4

3ε− 1} (11)

and we are done. Note that we could also have applied the identity 1
x
>

1
x+ a

to bound the denominator by 12 instead.

1.2 Special Limits
For right handed limit, we have:

Definition: If for every ε > 0, a δ > 0 can be found such that c < x < c+ δ =⇒ |f(x)− L| < ε, then lim
x→c+

= L.

For left handed limits:

Definition: If for every ε > 0, a δ > 0 can be found such that c− δ < x < c =⇒ |f(x)− L| < ε, then lim
x→c−

= L.

For infinite limits:

Definition: If for every M > 0, a δ > 0 can be found such that 0 < |x− c| < δ =⇒ f(x) > M , then lim
x→c

=∞.

Here’s an example using both:

Example 2: (2019 Quiz 2H, Modified) Prove the infinite limit lim
x→2+

x3/2

(x− 2)2 =∞.

For any M > 0, we want to pick a δ > 0 such that 2 < x < 2 + δ =⇒ x3/2

(x− 2)2 > M . We can immediately start

putting x3/2

(x− 2)2 > M under δ control by minimizing the numerator and maximizing the denominator:

x3/2

(x− 2)2 >
23/2

(2 + δ − 2)2 ≥M (12)

=⇒ 23/2

δ2 ≥M (13)

=⇒ δ2

23/2 ≤
1
M

(14)

=⇒ δ ≤ 23/4
√
M

(15)

For horizontal asymptotes as x→∞:

Theorem: If for every ε > 0, a A > 0 can be found such that x > A =⇒ |f(x)− L| < ε, then lim
x→∞

= L.
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Example 3: (Lecture 15, Assigned) Prove the limit lim
x→∞

1
xr

= 0 where r > 0.

For any ε > 0, we want to pick a A > 0 such that x > A =⇒
∣∣∣∣ 1
xr

∣∣∣∣ < ε. We can place the LHS of
∣∣∣∣ 1
xr

∣∣∣∣ < ε straight
away by minimizing the denominator by selecting the lower bound of x, which is A to get:

1
xr

<
1
Ar
≤ ε =⇒ A ≥ ε1/r (16)

so choosing A = ε1/r will always work.

2 Limit Theorems
Here are the limit theorems covered in class. Given lim

x→c
f(x) = L and lim

x→c
g(x) = M are both well defined, then:

• Constant Limit Theorem: lim
x→c

A = A

• Additivity Limit Theorem: lim
x→c

[f(x) + g(x)] = L+M

• Product Limit Theorem: lim
x→c

[f(x)g(x)] = LM

• Polynomial Limit Theorem: lim
x→c

P (x) = P (c) if P (x) is a polynomial.

• Rational Function Limit Theorem: lim
x→c

f(x)
g(x) = L

M

• Root Limit Theorem: lim
x→c

f(x)1/n = L1/n

• Sandwich Limit Theorem: If lim
x→c

f(x) = lim
x→c

h(x) = L and f(x) ≤ g(x) ≤ h(x) near c but not necessarily at c, then
lim
x→c

g(x) = L.

2.1 Limit Tips
To help with trigonometry limits, here are a few properties you should know (and understand how to derive):

• lim
x→0

sin x
x

= 1

• sin x ≤ x ≤ tan x for x ≥ 0. Since all these functions are odd, the inequality works in reverse for x < 0.

•
√

1− x2 ≤ cosx ≤ 1

When solving difficult trigonometry limits, try to break it up into sin x/x terms. If not possible, try to either bound the limit
using the sandwich limit theorem, or bash through applying trig identities.

Other limits may involve terms that include e in both the problem and/or in the answer. The following properties of e may be
helpful, and are derived in later sections:

• The Taylor Expansion: ex = 1 + x+ 1
2!x

2 + 1
3!x

3 + · · ·

• lim
x→∞

(
1 + 1

x

)x
= e

3 Continuity Theorems
Here are the definitions for continuity at different points:
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• Continuity at a point: f(x) is continuous at c if lim
x→c

= f(c)

• Continuity on the right: f(x) is continuous on the right of c if lim
x→c+

= f(c).

• Continuity on the left: f(x) is continuous on the left of c if lim
x→c−

= f(c).

• Continuity on open interval: f(x) is continuous on (a, b) iff f(x) is continuous at all x ∈ (a, b).

• Continuity on closed interval: f(x) is continuous on [a, b] iff f(x) is continuous at all x ∈ (a, b) and f(x) is continuous
from the right of a and from the left of b.

There are also a few continuity theorems discussed in class:

• Given f , g, is continuous at a, then f(x) + g(x) is continuous at a.

• If g(x) is continuous at a and f(x) is continuous at g(a), then f(g(x)) is continuous at a.

4 Derivative Theorems
The derivative f ′(x) is defined as:

f ′(x) ≡ lim
h→0

f(x+ h)− f(x)
h

(17)

where h is a dummy variable. A few definitions:

• Differentiability at a point: If f ′(a) exists, we say that f(x) is differentiable at a.

• Differentiability of function: If f ′(x) is differentiable at all x ∈ domain of f(x), then f(x) is a differentiable function.

• Differentiability on open interval: f(x) is differentiable on (a, b) if f ′(x) is defined for all x ∈ (a, b)

• Differentiability on closed interval: f(x) is differentiable on [a, b] if f ′(x) is defined for all x ∈ (a, b) and the right
hand derivative at a exists and the left hand derivative at b exists.

• Relation to Continuity: Given f(x) is differentiable at a, then f(x) is continuous at a.

When evaluating derivatives, there are a few theorems that we’ve learned. The following only apply if the derivatives of each
function exists.

• Constant DT: If f(x) = C, then f ′(x) = 0.

• Additivity DT: (f + g)′ = f ′ + g′

• Product DT: (fg)′ = f ′g + fg′

• Power DT: If f(x) = Cxn, then f ′(x) = nCxn−1.

• Poly DT: If P (x) = anx
n + an−1x

n−1 + · · ·+ a1x
1 + a0, then P ′(x) = nanx

n−1 + (n− 1)an−1x
n−2 + · · ·+ a1.

• Reciprocal DT:
(

1
f

)′
= −f

′

f2

• Quotient DT: (f/g)′ = f ′g − fg′

g2 .

• Chain DT: d

dx
f(g(x)) = g′(x)f ′g(x) ⇐⇒ df

dx
= df

dg

dg

dx
.

5 Features of a Graph
We can look at extrema points with derivatives:
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• Absolute Max: f(x) has an absolute maximum at c if f(c) ≥ f(x) for all x ∈ domain of f(x).

• Absolute Max in closed interval: f(x) has an absolute max on [a, b] if f(c) ≥ f(x) for all x ∈ [a, b].

• Local Max: f(x) has a local max at c if f(c) ≥ f(x) for some open interval containing c.

Here are a few important theorems:

Theorem: Intermediate Value Theorem: Given that f(x) is continuous on [a, b] and C is some number such that
f(a) < G(a) < f(b), there exists some C in [a, b] such that f(C) = G.

Theorem: Extreme Value Theorem: Given f(x) is continuous on [a, b], then f(x) has an absolute maximum f(c) and
an absolute minimum f(d) for some c, d ∈ [a, b].

Theorem: Rolle’s Theorem: Given that f is continuous on [a, b] and f is differentiable on [a, b) and f(a) = f(b), then
there exists some c ∈ (a, b) such that f ′(c) = 0. Note that there may be more than one c.

Theorem: Mean Value Theorem: Given that f(x) is continuous on [a, b] and f(x) is differentiable on (a, b), then
there exists some c ∈ (a, b) such that f ′(c) = f(b)− f(a)

b− a
.

5.1 Estimation
We can approximate a function f(x+∆x) as: f(x+∆x) ≈ f(x)+f ′(x)∆x. For example, this allows us to estimate something
like 291/3 as 271/3 + d

dx
x1/3

∣∣∣∣
x=27

· 2.

An approximation by itself is useless without a bound. We can create lower and upper bounds by applying the MVT between
[x, x+ ∆x] and/or between [x+ ∆x, x1] and finding the minimum and maximum values for f ′(x).

6 Curve sketching
6.1 Formally Defining Horizontal Aymptotes
Horizontal asymptotes are formally defined as:

Definition: A horizontal asymptote occurs when lim
x→∞

f(x) = L. We can say that f(x) goes to L as x goes to infinity
if for any ε > 0, a number A can be found s.t. for all x > A, |f(x)− L| < ε.
The idea behind this revolves around finding f values as close to L as might be wanted by going to large enough x
values.

An important theorem to determine horizontal asymptotes of reciprocal functions:

Theorem: The reciprocal horizontal asymptote limit:

lim
x→±∞

1
xr

= 0 (18)

6.2 Prelims
We can use Fermat’s theorem to determine critical points:

8



Definition: c is a critical point of f(x) if f ′(c) = 0 or f ′(c) DNE.

Here are some key features that might be seen on a graph:

• Concavity: If the graph of y = f(x) lies above all its tangents in I, then f(x) is concave up in I. If it lies below, then
it is concave down.

• Cusp: A point c is a cusp if f(x) is continuous at x = c but lim
x→c−

f(x) = ±∞ and lim
x→c+

f(x) = ∓∞.

• Vertical Tangent: A vertical tangent occurs when lim
x→c
|f ′(x)| =∞ and f(x) is continuous at c.

• Slant Asymptote: If lim
x→∞

[f(x)− (mx+ b)] = 0, then y = mx+ b is a slant asymptote to f(x) at +∞.

• Inflection point: A point of inflection is at c if f(x) is continuous at c and the sign of concavity changes at c.

A function is increasing on an interval I if f(x1) < f(x2) for all x1 < x2 in I. Although we can use this definition to find local
max/mins, there are a few cutie (QT/quick test) ways to do so:

• QT1: Increasing/Decreasing Test. If f is differentiable on the interval I, we show that if f ′ > 0, f is increasing. If
f ′ < 0, f is decreasing. If f ′ = 0, f is constant.

• QT2: First Derivative Test Given that I contains a critical point and f is continuous at ccrit, and f is differentiable in
I but not necessarily at ccrit. Then, if f ′ > 0 to the left of ccrit and f ′ < 0 to the right, then ccrit is a local max. If it’s
the opposite, we get the local minimum.

• QT3: Concavity Given that f(x) is twice differentiable on I, then f ′′(x) exists on I. As a result if f ′′(x) > 0, f is
concave up. If f ′′ < 0, f is concave down.

• QT4: Second Derivative Test Given that f ′′(x) is continuous near c and f ′(c) = 0, then if f ′′(c) > 0, f(c) is a local
minimum. If f ′′(c) < 0, f(c) is a local maximum. If f ′′(c) = 0, there is no verdict.

In general, the recipe to test for local max and min is to:

• Find all ccrit.

• If QT4 applies, use it.

• If it doesn’t, and if QT2 applies, use it.

• If QT2 doesn’t apply, use the basic definition of increasing/decreasing.

6.3 Curve Sketching Steps

1. Determine general behaviour:

• Find Domain / Range / Limits at ∞.

• Determine endpoints if they exist.

• Find vertical, horizontal, slant asymptotes if they exist:

2. Determine x and y intercepts.

3. Establish if f(x) is symmetrical, even, odd, and/or periodic.

4. Find f ′(x) and use this to:

• Find all critical points and f(ccrit).

• Find when f(x) is increasing/decreasing.
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• Apply QT2.

• Find vertical tangents / cusps if they exist.

5. Find f ′′(x) and use it to:

• Find when f(x) is concave up/down.

• Find points of inflection if they exist.

• Optional: Use QT4 to confirm local max/min

6. Determine the absolute maximum and min by choosing the largest and smallest values of f , if they exist.

7 Applications of Derivatives
7.1 Related Rates
The basic idea behind related rates is to relate two changing but related quantities (e.g. between the rate of change of the
volume and the surface area). It comes from the chain rule:

df

dx
= df

dg
· dg
dx

(19)

Usually: this is a result of a chain of relations. For example, if we know the radius of a bubble r(t) and we want to figure out
how fast the volume is changing, this is a result of the following chain:

• Time is changing, which changes the radius.

• The radius is changing, which changes the volume.

which intuitively makes it clear that:
dV

dt
= dV

dr

dr

dt
(20)

7.2 Optimization
Here is a checklist for solving optimization problems. If we want to optimize f :

• Check critical points.

• Check for endpoints.

• Check for local max, min.

• Check lim
x→∞

and lim
x→−∞

.

• Make a decision.

7.3 Numerical Methods for Optimization

Theorem: The method of successive bisections can be performed if f is a continuous function and we can find values
a and b such that f(b) < 0 < f(a). These two values can be determined by trial and error. By IVT, the root must exist
in between a and b. To use this method, we calculate the halfway point xh1. If f(xh1) is positive, we replace a with
xh1. If it’s negative, we replace b with xh1.

Theorem: Using Newton’s Method is much faster computationally. However, there is the added restriction that f(x)
must be differentiable. It works in the following steps:

1. Make a first guess for the root, x1
2. Find the equation for the tangent line at (x1, f(x1))

10



3. Find the x intercept of the tangent line, and let

x2 = x1 −
f(x1)
f ′(x1) (21)

and continue with x2. Note however, that this doesn’t always work such as when it diverges away from the root
such as x1/3.

Here are the overall steps that are recommended:

1. Try Newton’s Method first if function is differentiable.

2. If the xn values converge, great!

3. If they do not, try another value.

4. If they still diverge, use the method of successive bisections.

8 Formal Definition of an Integral
The summation notation is denoted below:

Definition: If am, am+1, am+2, . . . , an are real numbers and m and n are integers such that m ≤ n, then:
n∑

i=m
ai = am + am+1 + · · ·+ an−1 + an (22)

There are a few theorems:

• For a constant α:
n∑

i=m
αai = α

n∑
i=m

ai (23)

• It is also linear:
n∑

i=m
(ai + bi) =

n∑
i=m

ai +
n∑

i=m
bi (24)

•
n∑
i=1

α = αn

•
n∑
i=1

i = n(n+ 1)
2

•
n∑
i=1

i2 = n(n+ 1)(2n+ 1)
6

•
n∑
i=1

i3 =
(
n(n+ 1)

2

)2

•
n∑
i=1

i4 = n(n+ 1)(2n+ 1)(3n2 + 3n− 1)
30
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One way of defining an integral is thinking of the area under the curve. This introduces the concept of a Riemann Sum:
n∑
i=1

f(x∗i )∆xi (25)

where xi represents points in the partition of the domain in which we want to approximate the area. The approximation gets
more and more precise at the size ∆xi decreases. A few technical definitions to help:

Definition: A partition is a finite subset of the closed interval [a, b], which contains the points a and b. Denoted by P .

Definition: The norm of P = ‖P‖ which is the length of the longest subinterval:

‖P‖ = max (∆x1,∆x2, . . . ,∆xn) (26)

Which can all be tied together to formally define the definite integral.

Definition: If f is a function defined on a closed interval [a, b], let P be a partition of [a, b] with partition x0, x1, x2, . . . , xn
where:

a = x0 < x1 < x2 < · · · < xn = b (27)
Choose points x∗i within each subinterval [xi+ 1, xi] and let ∆xi = xi − xi−1, and ‖P‖ = max{∆xi}. Then the
definite integral of f from a to b is: ∫ b

a

f(x) dx ≡ lim
‖P‖

n∑
i=1

f(x∗i )∆xi (28)

if the limit exists. If the limit does exist, then f is called integrable on the interval [a, b]. The sign
∫

is called the
integral sign. f(x) is known as the integrand, and a, b are the limits of integration. The output is a single number that
does not depend on x.

We can formally show that the definite integral can take on a specific value I with a δ − ε statement:

Idea: If we have: ∫ b

a

f(x) dx = I (29)

then for ever ε > 0, there exists a δ > 0 such that:∣∣∣∣∣I −
n∑
i=1

f(x∗i )∆xi

∣∣∣∣∣ < ε (30)

for all partitions P of [a, b] with ‖P‖ < δ and all possible choices of x∗i in [xi−1, xi].

However, going through this proof would be a nightmare. Instead, we can show integrability via the following theorem:

Theorem: Continuous and/or piecewise continuous on [a, b] guarantees integrability on [a, b],

Definition: A function is piecewise continuous if it only has a finite number of jump discontinuities.

Now that we know when the integral exists, we can find ways of calculating it from scratch:

Idea: Going through with a full Riemann sum calculation is also tedious. As a result, here are a few conventions to make
it easier:
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• We usually select regular partitions:

∆x = ∆x1 = ∆x2 = · · · = ∆xn = b− a
n

(31)

• And we select x∗i to be the RH end point such that:

x∗i = xi = a+ i∆x = a+ i
b− a
n

(32)

Therefore, the integral can be written as:∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f

(
a+ i

b− a
n

)
b− a
n

(33)

9 Properties of Integration
9.1 Definite Integral Properties
There are a few properties:

• Constant: ∫ b

a

cdx = c(b− a) (34)

• Additivity: ∫ b

a

(f(x)± g(x)) dx =
∫ b

a

f(x) dx±
∫ b

a

g(x) dx (35)

• Constant Multiple: ∫ b

a

c(f)xdx = c

∫ b

a

f(x) dx (36)

• Changing Limits: ∫ b

a

f(x) dx =
∫ z

a

f(x) dx+
∫ b

z

f(x) dx (37)

There are also order properties of integrals. If a < b, then:

• If f(x) ≥ 0 for a ≤ x ≤ b, then ∫ b

a

f(x) dx ≥ 0 (38)

• If f(x) ≥ g(x) for a ≤ x ≤ b, then: ∫ b

a

f dx ≥
∫ b

a

g(x) dx (39)

• If m ≤ f(x) ≤M for a ≤ x ≤ b, then:

m(b− a) ≤
∫ b

a

f dx ≤M(b− a) (40)

• Absolute values: ∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx (41)

13



9.2 Fundamental Theorem of Calculus
The first fundamental theorem of calculus states that:

Theorem: Let f be continuous on [a, b]. The function F is defined on [a, b] by:

F (x) =
∫ x

a

f(t) dt (42)

is continuous on [a, b], differentiable on (a, b), and has derivative:

F ′(x) = f(x) (43)

for all x ∈ (a, b).

Rarely (never) will you get a simple question like this. Sometimes, the upper bound is a function g(x) instead. If this is the
case, then:

Idea: Assuming that f is continuous in [a, b], then the function F is defined on [a, b] by:

F (x) =
∫ g(x)

a

f(t) dt (44)

has a derivative:
F ′(x) = g′(x)f(g(x)) (45)

for x ∈ (a, b). To see why this is true, we can apply the chain rule:

F ′(x) = d

dx
f(g(x)) = g′(x)f(g(x)) (46)

Notice that the lower bound is a constant a so the final answer does not depend on it (since it is a constant). However, there
are other types of problems where both the lower and upper bound depend on x, if this is the case, then we can break it up
into two integrals:

d

dx

∫ h(x)

g(x)
f(t) dt = d

dx

(∫ h(x)

0
f(t) dt+

∫ 0

g(x)
f(t) dt

)
(47)

To apply the FTC on an integral where the lower bound is a function of x, but the upper bound is a constant, we can flip it:

d

dx

∫ 0

g(x)
f(t) dt = − d

dx

∫ g(x)

0
f(t) dt (48)

The second fundamental theorem of calculus states that:

Theorem: Let f be continuous on [a, b]. If G is any antiderivative for f on [a, b], then:∫ b

a

f(t) dt = G(b)−G(a) (49)

This can alternatively be written as: ∫ b

a

F ′(x) dx = F (b)− F (a) (50)

which can be interpreted as the net change of F (x). For example:

∆x =
∫ b

a

v(t) dt (51)

gives the displacement from t = a to t = b. The proofs for these two theorems are provided below:
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Proof: (1st theorem) For x and x+ h in (a, b),

F (x+ h)− F (x) =
∫ x+h

a

f(x) dt−
∫ x

a

f(x) dt (52)

=
∫ x

a

f(t) dt+
∫ x+h

x

f(t) dt−
∫ x

a

f(t) dt (53)

=
∫ x+h

x

f(t) dt (54)

For h 6= 0, we have:
F (x+ h)− F (x)

h
= 1
h

∫ x+h

x

f(t) dt (55)

We can separate it into cases. If h > 0, then we can write per the extreme value theorem the minimum value of f as
f(u) = m and the maximum value as f(v) = M for u, v ∈ [x, x+ h] such that:

mh ≤
∫ x+h

x

f(t) dt ≤Mh (56)

or:
f(u)h ≤

∫ x+h

x

f(t) dt ≤ f(v)h (57)

which we can rewrite, after dividing through by h:

f(u) ≤ F (x+ h)− F (x)
h

≤ f(v) (58)

As h→ 0, we have u→ x and v → x. Therefore:

lim
h→0

f(u) = lim
u→x

f(u) = f(x) (59)

lim
h→0

f(v) = lim
v→x

f(v) = f(x) (60)

which gives us:
F ′(x) = lim

h→0

F (x+ h)− F (x)
h

= f(x) (61)
or:

d

dx

∫ x

a

f(t) dt = f(x) (62)

Proof: (2nd theorem) Given that F (x) =
∫ x

a

f(t) dt is an antiderivative of f and given that G is an antiderivative,
then:

F ′(x) = G′(x) =⇒ F (x) = G(x) + C (63)
We know that F (a) = 0, so G(a) + C = 0 or C = −G(a), which gives:∫ b

a

f(t) dt = F (b) = G(b)−G(a) (64)

9.3 Integration Tricks
The u-substitution essentially reverses the chain rule.
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Idea: Suppose we have an integral in the form: ∫
f(g(x))g′(x) dx (65)

If we let u = g(x), then du = g′(x)dx. So we can simplify the integral to:∫
f(u) du = F (u) + C = F (g(x)) + C (66)

Once we have the indefinite integral, we can use back substitution to find the definite integral. We can avoid this step using a
change of variables.

Theorem: ∫ b

a

f(g(x))g′(x) dx =
∫ g(b)

g(a)
f(u) du (67)

In general, here are a few tips, in no particular order:

• Refer to the table of integrals at the back of the book. You are allowed to use them.

• Look for symmetry and periodicity.

• Draw a picture. Sometimes, you can avoid a complicated integral and use plain old geometry this way!

• For u-substitution, look for derivative-function pairs.

• If there are not too many terms, you can sometimes expand functions into a polynomial.

• Check if the integral even exists!

• Apply the first theorem of calculus, if applicable.

• See if the integral (or a similar one) is in the book.

10 Areas and Volumes
10.1 Areas Between Curves
Suppose we wish to find the area between two curves f(x) and g(x). We can do this by partitioning the area into infinitesimally
small rectangles:

∆Ai = [f(x∗i )− g(x∗i )]∆xi (68)
so that the area is given by:

A = lim
‖P‖→0

n∑
i=1

[f(x∗i )− g(x∗i )] ∆xi (69)

=
∫ b

a

[f(x)− g(x)] dx (70)

If we let f(x) ≥ g(x) when x ∈ [a, b], then this gives the difference in their areas A1 −A2. If the condition f(x) ≥ g(x) is not
satisfied, then we must break up the integral into multiple parts (if we interpret the area as having a positive area only). We
can modify the area formula to be:

A =
∫ b

a

|f(x)− g(x)|dx (71)

Suppose we have a curve x = f(y) and x = g(y) instead. The area between y = a and y = b works in the same way:

A =
∫ b

a

|f(y)− g(y)|dy (72)
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10.2 Volumes
We can determine the volume of a solid by partitioning it into thin cylinders whose axes area parallel to the x axis. Then we
can break up the volume into thin sections:

Vi ' Ai∆xi (73)
so the volume is:

V =
∫ b

a

A(x) dx (74)

which is the general formula for the volume of any shape. If we can figure out A(x) and the necessary bounds, we can find the
volume forany change.

Idea: For solids of revolution, we rotate a curve f(x) about the x axis. The volume of this solid using the disk method
is:

V =
∫ b

a

πf(x)2 dx (75)

Similarly around the y axis:

V =
∫ d

c

πg(y)2 dx (76)

For the volume by rotating the region between two curves f(x) and g(x), we get:

V =
∫ b

a

π(f(x)2 − g(x)2) dx (77)

which is known as the washer method.

Sometimes, the disk and washer method is too difficult to apply.

Idea: We can use the shell method about the y-axis to find the volume when a curve is rotated about the y axis.
Suppose we wish to rotate a curve f(x) from x = a to x = b around the y axis. Then the volume is:

V =
∫ b

a

2πxf(x) dx (78)

Similarly, if a curve is rotated about the x axis, we use the shell method about the x-axis:

V =
∫ b

a

2πyf(y) dy (79)

11 Misc
I honestly don’t know where this section belongs, so I’m just copying and pasting from my notes (which I actually spent a
decent amount of effort on):

• The average of a discrete set {a1, a2, . . . , aN} is given by:

aavg = 1
N

N∑
i

ai (80)

• For a continuous distribution, we can extend this to:

favg = 1
N

N∑
i

f(x∗i ) (81)

Taking the limit as N →∞, we get:

favg = 1
b− a

∫ b

a

f(x) dx (82)
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Theorem: Mean Value Theorem for Integrals: If f is continuous on [a, b], then there exists a number c in [a, b]
such that:

f(c) = favg = 1
b− a

∫ b

a

f(x) dx (83)

Proof: Define F (x) =
∫ x

a

f(t) dt. If we apply the mean value theorem to F , then:

F ′(c) = F (b)− F (a)
b− a

(84)

for some c ∈ [a, b]. Now since:
F ′(x) = f(x) (85)

it becomes apparent that:

f(c) =
∫ b
a
f(t) dt−�����∫ a

a
f(t) dt

b− a
= 1
b− a

∫ b

a

f(t) dt (86)

• We can also introduce inverse functions.

Definition: A function f(x) is said to be one-to-one if f(x1) = f(x2) implies x1 = x2. Alternatively, we can say
that f(x1) 6= f(x2) whenever x1 6= x2.

• We can use the horizontal line test. If any horizontal line crosses the function more than one time, then it is not
one-to-one.

Definition: Let f be a 1-1 function with domain A and range B. Then its inverse function, f−1 has domain B
and range A, and is defined by:

f−1(x) = x ⇐⇒ f(x) = y (87)
Therefore:

f−1(f(x)) = f(f−1(x)) = x (88)

Warning: To prevent confusion, not that:

1
f(x) = [f(x)]−1 6= f−1(x) (89)

• Geometrically, the inverse of a function represents a reflection of each point across the line y = x.

Example 4: If g(x) =
√

2x+ 1, it is implied that x ≥ −1/2, so it is a one-to-one function. Therefore, the inverse
function is:

g−1(x) = x2 − 1
2 (90)
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Theorem: If f is either an increasing or decreasing function, then f is 1− 1, and hence, has an inverse.
Proof. Say f(x) is decreasing, then x1 < x2 =⇒ f(x1) > f(x2) and if x1 6= x2 =⇒ f(x1) 6= f(x2).

Theorem: Let f be a 1-1 function defined on an interval I. If f is continuous, then f−1 is also continuous. (Proof
provided in Appendix F)

• Let g(x) = f−1(x). Then:

f(g(x)) = x (91)
d

dx
f(g(x)) = 1 (92)

f ′(g(x))g′(x) = 1 (93)

g′(x) = 1
f ′(g(x)) (94)

or:
d

dx
f−1(x) = 1

f ′(f−1(x)) (95)

which is equivalent to:
dy

dx
= 1

dy
dx

(96)

Theorem: The inverse of composite functions is given by:

(f ◦ g)−1 = g−1 ◦ f−1 (97)

Proof. Let y = (f ◦ g)−1(x). Then:
x = (f ◦ g)(y) = f(g(y)) (98)

so we have:

g(y) = f−1(x) (99)
y = g−1(f−1)(x) (100)

= (g−1 ◦ f−1)(x) (101)
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12 Logarithms and Exponentials

Warning: Note that in this section, I make the assumption you are already familiar with general logarithm and exponential
properties, so I won’t spend time writing those down.

Definition: A logarithm function is a nonconstant differentiable function f defined for x ∈ {R, (0,∞)} such that for
all a > 0 and b > 0:

f(a · b) = f(a) + f(b) (102)
It has the following properties:

• f(1) = 0
• f(1/x) = −f(x)
• f(x/y) = f(x)− f(y)
• f ′(x) = 1

x
f ′(1).

This leads to the definition of the natural logarithm:

Definition: The natural logarithm is defined as:

ln(x) =
∫ x

1

dt
t

(103)

Note that ln(x) is not the antiderivative of 1
t

. We can instead write:∫ dt
dt

= ln |x|+ C (104)

since x can be negative as well.

Theorem: Feynman’s trick of Differentiationa (otherwise known as logarithmic differention): The following was
popularized by Richard Feynman during the first of his Feynman Lectures. If we have a function:

g(x) = g1(x)g2(x)g3(x) · · · gn(x) (105)

Then taking the natural logarithm of both sides, applying the chain rule, and simplifying gives:

g′(x) = g(x)
(
g′1
g1

+ g′2
g2

+ · · ·+ g′n
gn

)
(106)

aNote that this is not a formal name. I just chose it to name it after Feynman because I’m a huge Feynman stan and I first heard about
it in the preface to the Feynman Lectures where he was talking about mathematical tricks.

Exponential functions can be introduced:

Definition: If z is a real number, then ez is the number such that:

ln(ez) = z (107)

More formally, we can write the exponential function as exp(x) = ex. The most useful property of ex is that:

d

dx
ex = ex (108)

We can extend this to general logarithmic and exponential functions. If x > 0, then we can define:
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Definition: The general exponential function is defined as

xz = ez ln x (109)

if x > 0.

Similarly:

Definition: The general logarithm can be defined as:

logp(x) = ln x
ln p (110)

such that:
d

dx
ax = ln(a)ax (111)

and
d

dx
logp(x) = 1

x ln p (112)

12.1 Bounding e

Idea: We can first bound ex by setting a lower limit (which happens to be the Taylor series!). Notice that via integration:

ex = 1 +
∫ x

0
et dt (113)

Since ex is always increasing, we can claim that ex > 1 for x > 0 such that:

ex = 1 +
∫ x

0
et dt > 1 +

∫ x

0
1 dt = 1 + x (114)

We can then repeat the previous step to show that

ex = 1 +
∫ x

0
et dt > 1 +

∫ x

0
(1 + x) dt = 1 + x+ x2

2 (115)

Repeating the process, we eventually get:

ex > 1 + x+ x2

2! + x3

3! + · · ·+ xn

n! (116)

Instead of choosing to bound ex, we can also choose to bound e. We have that:

ln x =
∫ x

1

dt
t

(117)

such that:
ln
(

1 + 1
n

)
=
∫ 1+1/n

1

dt
t
<

∫ 1+1/n

1
1 dt (118)

Since 1
t
<

1
1 for t > 0. The upper bound then becomes:

1 + 1
n
− 1 = 1

n
=⇒ ln

(
1 + 1

n

)
<

1
n

(119)

We can similarly repeat this process:
1 + 1

n
< e1/n =⇒ (1 + 1

n
)n < e (120)
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Note that if we take the limit as n→∞, intuitively we would expect the upper bound to become closer and closer to the true
value. We shall explore this further, and we can write the lower bound as:

ln
(

1 + 1
n

)
=
∫ 1+1/n

1

dt
t
>

∫ 1+1/n

1

dt
1 + 1/n (121)

since 1
t
>

1
1 + 1/n . We can write this in logarithm form to get:

ln
(

1 + 1
n

)
>

(
1

1 + 1/n

)(
1 + 1

n
− 1
)

= 1
n+ 1 =⇒

(
1 + 1

n

)n+1
> e (122)

Putting it altogether, we have the following statement:

Idea: e can be estimated with its lower and upper bound with the following:(
1 + 1

n

)n
< e <

(
1 + 1

n

)n+1
(123)

13 Inverse Trigonometric Functions
We can define the inverse function of trigonometric functions by restricting their domain, such as from −π/2 to π/2 for sin(x).

Definition: The inverse function for sin(x) is given by :

sin−1(x) = arcsin(x) (124)

Warning: You need to be very careful with the domain and range. Sometimes, if x falls out of the domain, it can lead
to a different answer altogether, or it could be undefined.

There’s a lot of formulas for this one, but to derive formula such as sin
(
tan−1(x)

)
, you just need to draw a picture of a right

angled triangle with one of the legs as x and either the hypotenuse or the other leg as 1. If proofs are not needed, there is a
formula sheet with all properties at the end of the book.

14 Complex Numbers
We can introduce complex numbers to assign values to the solutions of algebraic equations such as:

x2 = −1 (125)

Definition: A complex number is defined as z = a+ ib where a, b ∈ R and Re(z) = a and Im(z) = b.

We can represent complex numbers on a plane:

z = 2 + i

It is often helpful to write out a complex number using polar coordinates. The modulus of the number is:

|z| = |a+ ib| =
√
a2 + b2 (126)
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and the argument is the angle it makes with the real axis:

arg(z) = θ + 2kπ (127)

where k is an integer. This means that:

|z| cos(θ) = a

|z| sin(θ) = b

Idea: The polar representation can be written as:

z = r (sin cos θ + i sin θ) (128)

where r = |z|.

The complex conjugate for a complex number z = a+ ib is:

z̄ = a− ib (129)

Let z1 = a+ ib and z1 = c+ id. Then complex addition/subtraction has the following properties:

• z1 + z2 = (a+ c) + i(b+ d)

• z1 + z2 = z2 + z1 (commutative)

• (z1 + z2) + z3 = z1 + (z2 + z3) (associative)

• |z1 + z2| ≤ |z1|+ |z2| (triangle inequality)

• z1 + z2 = z̄1 + z̄2

Complex multiplication can be defined as:

(a+ ib)(c+ id) = (ab− bd) + i(ad+ bc) (130)

It has the following properties:

• z1 · z2 = z2 · z1 (commutative)

• (z1z2)z3 = z1(z2z3) (associative)

• z1(z2 + z3) = z1z2 + z1z3 (distributive)

• z1z2 = z̄1 · z̄2

Idea: When multiplying two complex numbers in their polar form, we get:

z1z2 = r1r2 (cos(θφ) + i sin(θ + φ)) (131)

Note that:
arg(z1 · z2) = arg(z1) + arg(z2) (132)

and the modulus is:
|z2z2| = |z1||z2| (133)

What this means is that the magnitudes get multiplied like scalars and z1 is rotated by the argument of z2.

One direct consequence of this idea is that multiplying by i is equivalent to rotating counterclockwise a complex number by 90
degrees. Note that this is an important concept that will appear when dealing with phasors in the circuit course.
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Theorem: De Moivre’s Theorem: Let z = cos θ + i sin θ. We have |z| = 1 and arg(z) = θ. Then:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) (134)

Definition: We can define division by multiplying the denominator by its conjugate:

1
z

= 1
a+ ib

= a− ib
a2 + b2 + z̄

|z|2
(135)

Therefore: ∣∣∣∣1z
∣∣∣∣ = 1
|z|

(136)

and:
arg
(

1
z

)
= − arg(z) (137)

The most important tool in working with complex numbers is the complex exponential:
z = eix (138)

We cannot define this by making the following observation. Note that the derivative of f(x) = eix is:
f ′(x) = ieix = if(x) (139)

and f(0) = 1. If we define g(x) = cos(x) + i sin(x), then:
g′(x) = − sin(x) + i cos(x) = ig(x) (140)

and g(0) = 1 also. Therefore, it seems convincing that f(x) = g(x) or:
eix = cos(x) + i sin(x) (141)

This is not a complete proof however, but will be rigorously proved next semester by using a Taylor series.

15 Differential Equations
• A differential equation can be defined as:

Definition: A differential equation is an equation which contains an unknown function with one or more of its
derivatives.

• A ordinary differential equation refers to one independent variable.

• The order of a differential equation refers to the highest derivative.

Definition: The general solution refers to an n parameter family of solutions if they include all solutions to the
differential equation.

Definition: A particular solution refers to constants that are assigned particular values according to initial values,
or boundary values.

• Separable DEs are the simplest, they are a first order homogeneous equation in the form of:
dy

dx
= f(x)g(y) (142)

and to solve this, we just need to solve the following:∫ dy
g(y) =

∫
f(x) dx (143)
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• Orthogonal trajectories refer to curves that pass through a family of curves such that they remain perpendicular to
each other such that:

f ′ = 1
g′

(144)

• There are many instances in physics and nature where the growth of a function is related to the function at that point,
such as:

df

dt
= kf(t) =⇒ k = 1

f

df

dt
= d

dt
(ln f) (145)

Separating, we get:
ln(f) + kt+ C =⇒ f = Cekt (146)

where C is based off initial conditions.

• The doubling time refers to the time for a function to double:

2P0 = P0e
kt2 =⇒ t2 = ln 2

k
(147)

• In many areas (such as radioactive decay), the half life gives the time necessary for the function to half. This occurs in
functions where the DE looks like:

df

dt
= −kN (148)

where k > 0. Similarly, the half life is given by:
t1/2 = ln 2

k
(149)

• For compound interest, the annual interest is given by:
V (t) = V0(1 + i)t (150)

If we compound the interest more and more often, we get:

V (t) = V0

(
1 + i

n

)nt
(151)

Taking the limit as n→∞, we get:

lim
n→∞

(
1 + i

n

)nt
= V0 lim

m→∞

((
1 + 1

m

)m)it
(152)

= V0e
it (153)

where we made the substitution m = n/i.

• The logistic model is a realistic model for population growth:
dP

dt
= kP

(
1− P

M

)
(154)

and the solution gives:
P (t) = M

1 +Ae−kt
(155)

15.1 First Order Equations

• In general, the solution to a linear first order equation

y′ + p(x)y = q(x) (156)
is

y = e−H(x)
[∫

eH(x)q(x) dx+ C

]
(157)

where the integrating factor is eH(x) where:
H(x) =

∫
p(x) dx (158)

with a constant of integration of zero.
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• A Bernoulli Equation is a nonlinear first order equation that can be solved. They are in the form of:

y′ + p(x)y = q(x)yr (159)

For r 6= 0, 1, we can make the substitution u = y1−r to simplify it to:

u′ + (1− r)p(x)u = (1− r)q(x) (160)

15.2 Homogeneous Second Order Equations

• A homogeneous second order linear DE takes on the form of:

y′′ + ay′ + by = 0 (161)

To solve this, we need to solve the characteristic equation:

r2 + ar + b = 0 (162)

• There are three cases:

– Case One: a2 − 4b > 0: Then r1, r2 are real and distinct so the general solution is:

y = C1e
r1x + C2e

r2x (163)

– Case Two: a2 − 4b = 0: Then r1 = r2 = −a2 = r. Then the solution is:

y = erx + xerx (164)

– Case Three: a2 − 4b < 0: Then r1 = α + iβ and r2 = α − iβ where α = −α2 and β = 1
2
√

4b− a2. Using the
complex identity, we can rewrite this as:k

y = C1e
(α+iβ)x + C2e

(α−iβ)x (165)
= C1e

αx (cosβx+ i sin βx) + C2e
αx(cosβx− i sin βx) (166)

= eαx ((C1 + C2) cosβx+ i(C1 − C2) sin βx) (167)
= eαx(A cosβx+B sin βx) (168)

where the coefficients could either be real or complex. Typically, we only look at the real part when dealing with
boundary conditions that only look at the real part.

Theorem: If y1(x) and y2(x) are both solutions of a homogeneous second order linear differential equation and
c1, c2 are any constants, then the linear combination:

y(x) = C1y1(x) + C2y2(x) (169)

is also a solution.
Proof. We have:

(c1y1 + c2y2)′′ + a(c1y1 + c2y2)′ + b(c1y1 + c2y2) = 0 (170)
c1(y′′1 + ay′1 + by1) + c2(y′′2 + ay′2 + by2) = 0 (171)

c1(0) + c2(0) = 0 (172)
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Theorem: If y1(x) and y2(x) are linearly independent solutions to a homogeneous second order linear differential
equation, then:

y(x) = C1y1(x) + C2y2(x) (173)
is the general solution. Two solutions are linearly independent iff:

y2(x) 6= Cy1(x) (174)

15.3 Nonhomogeneous Second Order Differential Equations

• A nonhomogeneous second order linear DE is in the form of

y′′ + ay′ + by′ = φ(x) (175)

We can define the complementary equation to be:

y′′ + ay′ + by = 0 (176)

Theorem: The general solution of a nonhomogeneous second order linear differential equation with constant
coefficients is given by:

y(x) = yp(x) + yc(x) (177)
where yp(x) is a particular solution of the complete differential equation and yc(x) is the general solution of the
complementary homogeneous equation.

• The idea behind the method of undetermined coefficients is to assume that the undetermined function has the same
form as φ(x). Suppose that φ(x) is in the form of:

φ(x) = ekxf(x) (178)

with k possibly being equal to zero. We can proceed depending on what f(x) is:

– If f(x) is a polynomial P (x), then guess a particular solution that is a quadratic with the same degree as P (x). For
example, if P (x) is a quadratic, then guess:

yp(x) = Ax2 +Bx+ C (179)

– If f(x) is in the form of P (x) sin(mx), then guess:

yp(x) = ekx (Q(x) cosmx+R(x) sinmx) (180)

After guessing a solution, solve for the undetermined coefficients.

• Note that if the particular solution you guess is contained in the complementary solution, you need to prevent redundancy
by multiplying it by x or x2.

• We can extend this to equations in the form of:

y′′ + ay′ + by = φ1(x) + φ2(x) (181)

we can apply the superposition principle to determine the particular solution to be the particular solution to φ1(x) added
to the particular solution to φ2(x).

• We can also use the methods of variation of parameters since guessing may not always be the most reliable. In general,
if we have a differential equation in the form of:

y′′ + ay′ + by = φ(x) (182)

then the complementary solution is given as:

yc = Ay1(x) +By2(x) (183)
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where y1(x) = er1x, y2(x) = er2x, and r1, r2 are the solutions to the quadratic:

r2 + ar + b = 0 (184)

except for the case of a double root.

• The particular solution is given by:
yp(x) = u1(x)y1(x) + u2(x)y2(x) (185)

where u′1(x) and u′2(x) are given by:

u′1(x) = −y2φ(x)
y1y′2 − y2y′1

(186)

u′2(x) = y1φ(x)
y1y′2 − y2y′1

(187)

• Integrating and letting the constant of integration to be zero, we can solve for u1(x) and u2(x). The general solution is
then:

y = yc(x) + yp(x) (188)
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