ESC194: Midterm 1 Review

QiLin Xue

Fall 2020

Contents

1 Delta-Epsilon Proofs 3
1.1 Brief Overview . 3
1.2 Special Limits . 4

2 Limit Theorems 5
3 Continuity Theorems 5
4 Derivative Theorems 6
5 Features of a Graph 6
5.1 Estimation . 7
5.2 Curve Sketching Prelims . 7
5.3 Curve Sketching Steps . 8

Index

Absolute Max, 6
Absolute Max in closed interval, 6
Additivity DT:, 6
Additivity Limit Theorem:, 5
Chain DT:, 6
Concavity:, 7
Constant DT:, 6
Constant Limit Theorem:, 5
Continuity at a point, 5
Continuity on closed interval, 5
Continuity on open interval, 5
Continuity on the left, 5
Continuity on the right, 5
Cusp:, 7
Definition, 3, 4, 7
Differentiability at a point:, 6
Differentiability of function:, 6
Differentiability on closed interval:, 6
Differentiability on open interval:, 6
Example, 3-5
Extreme Value Theorem:, 7
Inflection point:, 7
Intermediate Value Theorem:, 7

Local Max, 6
Mean Value Theorem:, 7
Poly DT:, 6
Polynomial Limit Theorem:, 5
Power DT:, 6
Product DT:, 6
Product Limit Theorem:, 5
QT1: Increasing/Decreasing Test., 7
QT2: First Derivative Test, 7
QT3: Concavity, 7
QT4: Second Derivative Test, 8
Quotient DT:, 6
Rational Function Limit Theorem:, 5
Reciprocal DT:, 6
Relation to Continuity:, 6
Rolle's Theorem, 7
Root Limit Theorem:, 5
Sandwich Limit Theorem:, 5
Slant Asymptote:, 7
Theorem, 4, 7
Triangle Inequality:, 3
Vertical Tangent:, 7

1 Delta-Epsilon Proofs

1.1 Brief Overview

The formal definition of the limit $\lim _{x \rightarrow c} f(x)=L$:

Definition: If for any $\epsilon>0$, a $\delta>0$ can be found such that for all $0<|x-c|<\delta$, it can be proved that $|f(x)-L|<\epsilon$, then $\lim _{x \rightarrow c} f(x)=L$.

The general steps are as follows:

- Write: "For any $\epsilon>0$, we want to pick a $\delta>0$ such that $0<|x-c|<\delta \Longrightarrow|f(x)-L|<\epsilon$ "
- Start with $|f(x)-L|<\epsilon$ to start getting it under δ control (e.g. by expressing the LHS in terms of δ)
- Pick an arbitrary value of $\delta=a$ (if in doubt, choose $a=1$) and modify $0<|x-c|<a$ to write x in terms of a. Substitute this back into $|f(x)-L|<\epsilon$ to fully express the LHS in terms of δ.
- Solve for δ in terms of ϵ and pick $\delta=\min \{a, f(\epsilon)\}$.

A few tips/tricks:

- Apply the Triangle Inequality: $|a+b| \leq|a|+|b|$.
- Apply the identity: $|a b|=|a||b|$.
- Apply the inequality: $\frac{1}{x}>\frac{1}{x+a}$ for $x>0$ given $a>0$.
- Remember that $0<|x-c|<\delta \Longrightarrow c-\delta<x<c+\delta$.

Example 1: (2019 Midterm, Modified) Prove $\lim _{x \rightarrow 2} \frac{3 x+1}{(x+1)^{2}}=1$.
For any $\epsilon>0$, we want to pick a $\delta>0$ such that $0<|x-2|<\delta \Longrightarrow\left|\frac{3 x+1}{(x+1)^{2}}-1\right|<\epsilon$. We can start with:

$$
\begin{align*}
\left|\frac{3 x+1}{(x+1)^{2}}-1\right|<\epsilon & \Longrightarrow\left|\frac{3 x+1-\left(x^{2}+2 x+1\right)}{(x+1)^{2}}\right| \tag{1}\\
& \Longrightarrow\left|\frac{x-x^{2}}{(x+1)^{2}}\right|<\epsilon \tag{2}\\
& \Longrightarrow\left|\frac{x(1-x)}{(x+1)^{2}}\right|<\epsilon \tag{3}\\
& \Longrightarrow\left|\frac{x}{(x+1)^{2}}\right||x-1|<\epsilon \tag{4}\\
& \Longrightarrow\left|\frac{x}{(x+1)^{2}}\right||(x-1-1)+(1)|<\epsilon \tag{5}\\
& \Longrightarrow\left|\frac{x}{(x+1)^{2}}\right|(|x-2|+|1|)<\epsilon \tag{6}\\
& \Longrightarrow\left|\frac{x}{(x+1)^{2}}\right|(\delta+1)<\epsilon \tag{7}
\end{align*}
$$

We can set $\delta=1$. If this is the case then:

$$
\begin{equation*}
0<|x-2|<1 \Longrightarrow 1<x<3 \Longleftrightarrow 2<x+1<4 \tag{9}
\end{equation*}
$$

We can bound the denominator $\left|(x+1)^{2}\right|$ by its lower bound $2^{2}=4$ and the numerator $|x|$ by its upper bound of 3 , which we can substitute back in to get:

$$
\begin{equation*}
\left|\frac{x}{(x+1)^{2}}\right|(\delta+1)<\frac{3}{4}(\delta+1) \leq \epsilon \Longrightarrow \delta \leq \frac{4}{3} \epsilon-1 \tag{10}
\end{equation*}
$$

Thus, we can pick:

$$
\begin{equation*}
\delta=\min \left\{1, \frac{4}{3} \epsilon-1\right\} \tag{11}
\end{equation*}
$$

and we are done. Note that we could also have applied the identity $\frac{1}{x}>\frac{1}{x+a}$ to bound the denominator by 1^{2} instead.

1.2 Special Limits

For right handed limit, we have:

Definition: If for every $\epsilon>0$, a $\delta>0$ can be found such that $c<x<c+\delta \Longrightarrow|f(x)-L|<\epsilon$, then $\lim _{x \rightarrow c^{+}}=L$.

For left handed limits:

Definition: If for every $\epsilon>0$, a $\delta>0$ can be found such that $c-\delta<x<c \Longrightarrow|f(x)-L|<\epsilon$, then $\lim _{x \rightarrow c^{-}}=L$.

For infinite limits:

Definition: If for every $M>0$, a $\delta>0$ can be found such that $0<|x-c|<\delta \Longrightarrow f(x)>M$, then $\lim _{x \rightarrow c}=\infty$.

Here's an example using both:

Example 2: (2019 Quiz 2H, Modified) Prove the infinite limit $\lim _{x \rightarrow 2^{+}} \frac{x^{3 / 2}}{(x-2)^{2}}=\infty$.
For any $M>0$, we want to pick a $\delta>0$ such that $2<x<2+\delta \Longrightarrow \frac{x^{3 / 2}}{(x-2)^{2}}>M$. We can immediately start putting $\frac{x^{3 / 2}}{(x-2)^{2}}>M$ under δ control by minimizing the numerator and maximizing the denominator:

$$
\begin{align*}
\frac{x^{3 / 2}}{(x-2)^{2}} & >\frac{2^{3 / 2}}{(2+\delta-2)^{2}} \geq M \tag{12}\\
& \Longrightarrow \frac{2^{3 / 2}}{\delta^{2}} \geq M \tag{13}\\
& \Longrightarrow \frac{\delta^{2}}{2^{3 / 2}} \leq \frac{1}{M} \tag{14}\\
& \Longrightarrow \delta \leq \frac{2^{3 / 4}}{\sqrt{M}} \tag{15}
\end{align*}
$$

For horizontal asymptotes as $x \rightarrow \infty$:

Theorem: If for every $\epsilon>0$, a $A>0$ can be found such that $x>A \Longrightarrow|f(x)-L|<\epsilon$, then $\lim _{x \rightarrow \infty}=L$.

Example 3: (Lecture 15, Assigned) Prove the limit $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0$ where $r>0$.
For any $\epsilon>0$, we want to pick a $A>0$ such that $x>A \Longrightarrow\left|\frac{1}{x^{r}}\right|<\epsilon$. We can place the LHS of $\left|\frac{1}{x^{r}}\right|<\epsilon$ straight away by minimizing the denominator by selecting the lower bound of x, which is A to get:

$$
\begin{equation*}
\frac{1}{x^{r}}<\frac{1}{A^{r}} \leq \epsilon \Longrightarrow A \geq \epsilon^{1 / r} \tag{16}
\end{equation*}
$$

so choosing $A=\epsilon^{1 / r}$ will always work.

2 Limit Theorems

Here are the limit theorems covered in class. Given $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$ are both well defined, then:

- Constant Limit Theorem: $\lim _{x \rightarrow c} A=A$
- Additivity Limit Theorem: $\lim _{x \rightarrow c}[f(x)+g(x)]=L+M$
- Product Limit Theorem: $\lim _{x \rightarrow c}[f(x) g(x)]=L M$
- Polynomial Limit Theorem: $\lim _{x \rightarrow c} P(x)=P(c)$ if $P(x)$ is a polynomial.
- Rational Function Limit Theorem: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}$
- Root Limit Theorem: $\lim _{x \rightarrow c} f(x)^{1 / n}=L^{1 / n}$
- Sandwich Limit Theorem: If $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$ and $f(x) \leq g(x) \leq h(x)$ near c but not necessarily at c, then $\lim _{x \rightarrow c} g(x)=L$.

To help with trigonometry problems, here are a few properties you should know (and understand how to derive):

- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
- $\sin x \leq x \leq \tan x$ for $x \geq 0$. Since all these functions are odd, the inequality works in reverse for $x<0$.
- $\sqrt{1-x^{2}} \leq \cos x \leq 1$

Tip: When solving difficult trigonometry limits, try to break it up into $\sin x / x$ terms. If not possible, try to either bound the limit using the sandwich limit theorem, or bash through applying trig identities.

3 Continuity Theorems

Here are the definitions for continuity at different points:

- Continuity at a point: $f(x)$ is continuous at c if $\lim _{x \rightarrow c}=f(c)$
- Continuity on the right: $f(x)$ is continuous on the right of c if $\lim _{x \rightarrow c^{+}}=f(c)$.
- Continuity on the left: $f(x)$ is continuous on the left of c if $\lim _{x \rightarrow c^{-}}=f(c)$.
- Continuity on open interval: $f(x)$ is continuous on (a, b) iff $f(x)$ is continuous at all $x \in(a, b)$.
- Continuity on closed interval: $f(x)$ is continuous on $[a, b]$ iff $f(x)$ is continuous at all $x \in(a, b)$ and $f(x)$ is continuous
from the right of a and from the left of b.
There are also a few continuity theorems discussed in class:
- Given f, g, is continuous at a, then $f(x)+g(x)$ is continuous at a.
- If $g(x)$ is continuous at a and $f(x)$ is continuous at $g(a)$, then $f(g(x))$ is continuous at a.

4 Derivative Theorems

The derivative $f^{\prime}(x)$ is defined as:

$$
\begin{equation*}
f^{\prime}(x) \equiv \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{17}
\end{equation*}
$$

where h is a dummy variable. A few definitions:

- Differentiability at a point: If $f^{\prime}(a)$ exists, we say that $f(x)$ is differentiable at a.
- Differentiability of function: If $f^{\prime}(x)$ is differentiable at all $x \in$ domain of $f(x)$, then $f(x)$ is a differentiable function.
- Differentiability on open interval: $f(x)$ is differentiable on (a, b) if $f^{\prime}(x)$ is defined for all $x \in(a, b)$
- Differentiability on closed interval: $f(x)$ is differentiable on $[a, b]$ if $f^{\prime}(x)$ is defined for all $x \in(a, b)$ and the right hand derivative at a exists and the left hand derivative at b exists.
- Relation to Continuity: Given $f(x)$ is differentiable at a, then $f(x)$ is continuous at a.

When evaluating derivatives, there are a few theorems that we've learned. The following only apply if the derivatives of each function exists.

- Constant DT: If $f(x)=C$, then $f^{\prime}(x)=0$.
- Additivity DT: $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
- Product DT: $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
- Power DT: If $f(x)=C x^{n}$, then $f^{\prime}(x)=n C x^{n-1}$.
- Poly DT: If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x^{1}+a_{0}$, then $P^{\prime}(x)=n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\cdots+a_{1}$.
- Reciprocal DT: $\left(\frac{1}{f}\right)^{\prime}=\frac{-f^{\prime}}{f^{2}}$
- Quotient DT: $(f / g)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$.
- Chain DT: $\frac{d}{d x} f(g(x))=g^{\prime}(x) f^{\prime} g(x) \Longleftrightarrow \frac{d f}{d x}=\frac{d f}{d g} \frac{d g}{d x}$.

5 Features of a Graph

We can look at extrema points with derivatives:

- Absolute Max: $f(x)$ has an absolute maximum at c if $f(c) \geq f(x)$ for all $x \in$ domain of $f(x)$.
- Absolute Max in closed interval: $f(x)$ has an absolute max on $[a, b]$ if $f(c) \geq f(x)$ for all $x \in[a, b]$.
- Local Max: $f(x)$ has a local max at c if $f(c) \geq f(x)$ for some open interval containing c.

Here are a few important theorems:

Theorem: Intermediate Value Theorem: Given that $f(x)$ is continuous on $[a, b]$ and C is some number such that $f(a)<G(a)<f(b)$, there exists some C in $[a, b]$ such that $f(C)=G$.

Theorem: Extreme Value Theorem: Given $f(x)$ is continuous on $[a, b]$, then $f(x)$ has an absolute maximum $f(c)$ and an absolute minimum $f(d)$ for some $c, d \in[a, b]$.

Theorem: Rolle's Theorem: Given that f is continuous on $[a, b]$ and f is differentiable on $[a, b)$ and $f(a)=f(b)$, then there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$. Note that there may be more than one c.

Theorem: Mean Value Theorem: Given that $f(x)$ is continuous on $[a, b]$ and $f(x)$ is differentiable on (a, b), then there exists some $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

5.1 Estimation

We can approximate a function $f(x+\Delta x)$ as: $f(x+\Delta x) \approx f(x)+f^{\prime}(x) \Delta x$. For example, this allows us to estimate something like $29^{1 / 3}$ as $27^{1 / 3}+\left.\frac{d}{d x} x^{1 / 3}\right|_{x=27} \cdot 2$.

An approximation by itself is useless without a bound. We can create lower and upper bounds by applying the MVT between $[x, x+\Delta x]$ and/or between $\left[x+\Delta x, x_{1}\right]$ and finding the minimum and maximum values for $f^{\prime}(x)$.

5.2 Curve Sketching Prelims

We can use Fermat's theorem to determine critical points:
Definition: c is a critical point of $f(x)$ if $f^{\prime}(c)=0$ or $f^{\prime}(c)$ DNE.

Here are some key features that might be seen on a graph:

- Concavity: If the graph of $y=f(x)$ lies above all its tangents in I, then $f(x)$ is concave up in I. If it lies below, then it is concave down.
- Cusp: A point c is a cusp if $f(x)$ is continuous at $x=c$ but $\lim _{x \rightarrow c^{-}} f(x)= \pm \infty$ and $\lim _{x \rightarrow c^{+}} f(x)=\mp \infty$.
- Vertical Tangent: A vertical tangent occurs when $\lim _{x \rightarrow c}\left|f^{\prime}(x)\right|=\infty$ and $f(x)$ is continuous at c.
- Slant Asymptote: If $\lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0$, then $y=m x+b$ is a slant asymptote to $f(x)$ at $+\infty$.
- Inflection point: A point of inflection is at c if $f(x)$ is continuous at c and the sign of concavity changes at c.

A function is increasing on an interval I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}<x_{2}$ in I. Although we can use this definition to find local max/mins, there are a few cutie (QT/quick test) ways to do so:

- QT1: Increasing/Decreasing Test. If f is differentiable on the interval I, we show that if $f^{\prime}>0, f$ is increasing. If $f^{\prime}<0, f$ is decreasing. If $f^{\prime}=0, f$ is constant.
- QT2: First Derivative Test Given that I contains a critical point and f is continuous at $c_{\text {crit }}$, and f is differentiable in I but not necessarily at $c_{\text {crit. }}$. Then, if $f^{\prime}>0$ to the left of $c_{\text {crit }}$ and $f^{\prime}<0$ to the right, then $c_{\text {crit }}$ is a local max. If it's the opposite, we get the local minimum.
- QT3: Concavity Given that $f(x)$ is twice differentiable on I, then $f^{\prime \prime}(x)$ exists on I. As a result if $f^{\prime \prime}(x)>0, f$ is concave up. If $f^{\prime \prime}<0, f$ is concave down.
- QT4: Second Derivative Test Given that $f^{\prime \prime}(x)$ is continuous near c and $f^{\prime}(c)=0$, then if $f^{\prime \prime}(c)>0, f(c)$ is a local minimum. If $f^{\prime \prime}(c)<0, f(c)$ is a local maximum. If $f^{\prime \prime}(c)=0$, there is no verdict.

In general, the recipe to test for local max and min is to:

- Find all $c_{\text {crit }}$.
- If QT4 applies, use it.
- If it doesn't, and if QT2 applies, use it.
- If QT2 doesn't apply, use the basic definition of increasing/decreasing.

5.3 Curve Sketching Steps

1. Determine general behaviour:

- Find Domain / Range / Limits at ∞.
- Determine endpoints if they exist.
- Find vertical, horizontal, slant asymptotes if they exist:

2. Determine x and y intercepts.
3. Establish if $f(x)$ is symmetrical, even, odd, and/or periodic.
4. Find $f^{\prime}(x)$ and use this to:

- Find all critical points and $f\left(c_{\text {crit }}\right)$.
- Find when $f(x)$ is increasing/decreasing.
- Apply QT2.
- Find vertical tangents / cusps if they exist.

5. Find $f^{\prime \prime}(x)$ and use it to:

- Find when $f(x)$ is concave up/down.
- Find points of inflection if they exist.
- Optional: Use QT4 to confirm local max/min

6. Determine the absolute maximum and min by choosing the largest and smallest values of f, if they exist.
