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1 Delta-Epsilon Proofs
1.1 Brief Overview
The formal definition of the limit lim

x→c
f(x) = L:

Definition: If for any ε > 0, a δ > 0 can be found such that for all 0 < |x− c| < δ, it can be proved that |f(x)−L| < ε,
then lim

x→c
f(x) = L.

The general steps are as follows:

• Write: “For any ε > 0, we want to pick a δ > 0 such that 0 < |x− c| < δ =⇒ |f(x)− L| < ε”

• Start with |f(x)− L| < ε to start getting it under δ control (e.g. by expressing the LHS in terms of δ)

• Pick an arbitrary value of δ = a (if in doubt, choose a = 1) and modify 0 < |x − c| < a to write x in terms of a.
Substitute this back into |f(x)− L| < ε to fully express the LHS in terms of δ.

• Solve for δ in terms of ε and pick δ = min{a, f(ε)}.

A few tips/tricks:

• Apply the Triangle Inequality: |a+ b| ≤ |a|+ |b|.

• Apply the identity: |ab| = |a||b|.

• Apply the inequality: 1
x
>

1
x+ a

for x > 0 given a > 0.

• Remember that 0 < |x− c| < δ =⇒ c− δ < x < c+ δ.

Example 1: (2019 Midterm, Modified) Prove lim
x→2

3x+ 1
(x+ 1)2 = 1.

For any ε > 0, we want to pick a δ > 0 such that 0 < |x− 2| < δ =⇒
∣∣∣∣ 3x+ 1
(x+ 1)2 − 1

∣∣∣∣ < ε. We can start with:

∣∣∣∣ 3x+ 1
(x+ 1)2 − 1

∣∣∣∣ < ε =⇒
∣∣∣∣3x+ 1− (x2 + 2x+ 1)

(x+ 1)2

∣∣∣∣ (1)

=⇒
∣∣∣∣ x− x2

(x+ 1)2

∣∣∣∣ < ε (2)

=⇒
∣∣∣∣x(1− x)
(x+ 1)2

∣∣∣∣ < ε (3)

=⇒
∣∣∣∣ x

(x+ 1)2

∣∣∣∣ |x− 1| < ε (4)

=⇒
∣∣∣∣ x

(x+ 1)2

∣∣∣∣ |(x− 1− 1) + (1)| < ε (5)

=⇒
∣∣∣∣ x

(x+ 1)2

∣∣∣∣ (|x− 2|+ |1|) < ε (6)

=⇒
∣∣∣∣ x

(x+ 1)2

∣∣∣∣ (δ + 1) < ε (7)

(8)

We can set δ = 1. If this is the case then:

0 < |x− 2| < 1 =⇒ 1 < x < 3 ⇐⇒ 2 < x+ 1 < 4 (9)
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We can bound the denominator |(x + 1)2| by its lower bound 22 = 4 and the numerator |x| by its upper bound of 3,
which we can substitute back in to get:∣∣∣∣ x

(x+ 1)2

∣∣∣∣ (δ + 1) < 3
4(δ + 1) ≤ ε =⇒ δ ≤ 4

3ε− 1 (10)

Thus, we can pick:
δ = min{1, 4

3ε− 1} (11)

and we are done. Note that we could also have applied the identity 1
x
>

1
x+ a

to bound the denominator by 12 instead.

1.2 Special Limits
For right handed limit, we have:

Definition: If for every ε > 0, a δ > 0 can be found such that c < x < c+ δ =⇒ |f(x)− L| < ε, then lim
x→c+

= L.

For left handed limits:

Definition: If for every ε > 0, a δ > 0 can be found such that c− δ < x < c =⇒ |f(x)− L| < ε, then lim
x→c−

= L.

For infinite limits:

Definition: If for every M > 0, a δ > 0 can be found such that 0 < |x− c| < δ =⇒ f(x) > M , then lim
x→c

=∞.

Here’s an example using both:

Example 2: (2019 Quiz 2H, Modified) Prove the infinite limit lim
x→2+

x3/2

(x− 2)2 =∞.

For any M > 0, we want to pick a δ > 0 such that 2 < x < 2 + δ =⇒ x3/2

(x− 2)2 > M . We can immediately start

putting x3/2

(x− 2)2 > M under δ control by minimizing the numerator and maximizing the denominator:

x3/2

(x− 2)2 >
23/2

(2 + δ − 2)2 ≥M (12)

=⇒ 23/2

δ2 ≥M (13)

=⇒ δ2

23/2 ≤
1
M

(14)

=⇒ δ ≤ 23/4
√
M

(15)

For horizontal asymptotes as x→∞:

Theorem: If for every ε > 0, a A > 0 can be found such that x > A =⇒ |f(x)− L| < ε, then lim
x→∞

= L.
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Example 3: (Lecture 15, Assigned) Prove the limit lim
x→∞

1
xr

= 0 where r > 0.

For any ε > 0, we want to pick a A > 0 such that x > A =⇒
∣∣∣∣ 1
xr

∣∣∣∣ < ε. We can place the LHS of
∣∣∣∣ 1
xr

∣∣∣∣ < ε straight
away by minimizing the denominator by selecting the lower bound of x, which is A to get:

1
xr

<
1
Ar
≤ ε =⇒ A ≥ ε1/r (16)

so choosing A = ε1/r will always work.

2 Limit Theorems
Here are the limit theorems covered in class. Given lim

x→c
f(x) = L and lim

x→c
g(x) = M are both well defined, then:

• Constant Limit Theorem: lim
x→c

A = A

• Additivity Limit Theorem: lim
x→c

[f(x) + g(x)] = L+M

• Product Limit Theorem: lim
x→c

[f(x)g(x)] = LM

• Polynomial Limit Theorem: lim
x→c

P (x) = P (c) if P (x) is a polynomial.

• Rational Function Limit Theorem: lim
x→c

f(x)
g(x) = L

M

• Root Limit Theorem: lim
x→c

f(x)1/n = L1/n

• Sandwich Limit Theorem: If lim
x→c

f(x) = lim
x→c

h(x) = L and f(x) ≤ g(x) ≤ h(x) near c but not necessarily at c, then
lim
x→c

g(x) = L.

To help with trigonometry problems, here are a few properties you should know (and understand how to derive):

• lim
x→0

sin x
x

= 1

• sin x ≤ x ≤ tan x for x ≥ 0. Since all these functions are odd, the inequality works in reverse for x < 0.

•
√

1− x2 ≤ cosx ≤ 1

Tip: When solving difficult trigonometry limits, try to break it up into sin x/x terms. If not possible, try to either bound the
limit using the sandwich limit theorem, or bash through applying trig identities.

3 Continuity Theorems
Here are the definitions for continuity at different points:

• Continuity at a point: f(x) is continuous at c if lim
x→c

= f(c)

• Continuity on the right: f(x) is continuous on the right of c if lim
x→c+

= f(c).

• Continuity on the left: f(x) is continuous on the left of c if lim
x→c−

= f(c).

• Continuity on open interval: f(x) is continuous on (a, b) iff f(x) is continuous at all x ∈ (a, b).

• Continuity on closed interval: f(x) is continuous on [a, b] iff f(x) is continuous at all x ∈ (a, b) and f(x) is continuous
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from the right of a and from the left of b.

There are also a few continuity theorems discussed in class:

• Given f , g, is continuous at a, then f(x) + g(x) is continuous at a.

• If g(x) is continuous at a and f(x) is continuous at g(a), then f(g(x)) is continuous at a.

4 Derivative Theorems
The derivative f ′(x) is defined as:

f ′(x) ≡ lim
h→0

f(x+ h)− f(x)
h

(17)

where h is a dummy variable. A few definitions:

• Differentiability at a point: If f ′(a) exists, we say that f(x) is differentiable at a.

• Differentiability of function: If f ′(x) is differentiable at all x ∈ domain of f(x), then f(x) is a differentiable function.

• Differentiability on open interval: f(x) is differentiable on (a, b) if f ′(x) is defined for all x ∈ (a, b)

• Differentiability on closed interval: f(x) is differentiable on [a, b] if f ′(x) is defined for all x ∈ (a, b) and the right
hand derivative at a exists and the left hand derivative at b exists.

• Relation to Continuity: Given f(x) is differentiable at a, then f(x) is continuous at a.

When evaluating derivatives, there are a few theorems that we’ve learned. The following only apply if the derivatives of each
function exists.

• Constant DT: If f(x) = C, then f ′(x) = 0.

• Additivity DT: (f + g)′ = f ′ + g′

• Product DT: (fg)′ = f ′g + fg′

• Power DT: If f(x) = Cxn, then f ′(x) = nCxn−1.

• Poly DT: If P (x) = anx
n + an−1x

n−1 + · · ·+ a1x
1 + a0, then P ′(x) = nanx

n−1 + (n− 1)an−1x
n−2 + · · ·+ a1.

• Reciprocal DT:
(

1
f

)′
= −f

′

f2

• Quotient DT: (f/g)′ = f ′g − fg′

g2 .

• Chain DT: d

dx
f(g(x)) = g′(x)f ′g(x) ⇐⇒ df

dx
= df

dg

dg

dx
.

5 Features of a Graph
We can look at extrema points with derivatives:

• Absolute Max: f(x) has an absolute maximum at c if f(c) ≥ f(x) for all x ∈ domain of f(x).

• Absolute Max in closed interval: f(x) has an absolute max on [a, b] if f(c) ≥ f(x) for all x ∈ [a, b].

• Local Max: f(x) has a local max at c if f(c) ≥ f(x) for some open interval containing c.

Here are a few important theorems:
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Theorem: Intermediate Value Theorem: Given that f(x) is continuous on [a, b] and C is some number such that
f(a) < G(a) < f(b), there exists some C in [a, b] such that f(C) = G.

Theorem: Extreme Value Theorem: Given f(x) is continuous on [a, b], then f(x) has an absolute maximum f(c) and
an absolute minimum f(d) for some c, d ∈ [a, b].

Theorem: Rolle’s Theorem: Given that f is continuous on [a, b] and f is differentiable on [a, b) and f(a) = f(b), then
there exists some c ∈ (a, b) such that f ′(c) = 0. Note that there may be more than one c.

Theorem: Mean Value Theorem: Given that f(x) is continuous on [a, b] and f(x) is differentiable on (a, b), then
there exists some c ∈ (a, b) such that f ′(c) = f(b)− f(a)

b− a
.

5.1 Estimation
We can approximate a function f(x+∆x) as: f(x+∆x) ≈ f(x)+f ′(x)∆x. For example, this allows us to estimate something
like 291/3 as 271/3 + d

dx
x1/3

∣∣∣∣
x=27

· 2.

An approximation by itself is useless without a bound. We can create lower and upper bounds by applying the MVT between
[x, x+ ∆x] and/or between [x+ ∆x, x1] and finding the minimum and maximum values for f ′(x).

5.2 Curve Sketching Prelims
We can use Fermat’s theorem to determine critical points:

Definition: c is a critical point of f(x) if f ′(c) = 0 or f ′(c) DNE.

Here are some key features that might be seen on a graph:

• Concavity: If the graph of y = f(x) lies above all its tangents in I, then f(x) is concave up in I. If it lies below, then
it is concave down.

• Cusp: A point c is a cusp if f(x) is continuous at x = c but lim
x→c−

f(x) = ±∞ and lim
x→c+

f(x) = ∓∞.

• Vertical Tangent: A vertical tangent occurs when lim
x→c
|f ′(x)| =∞ and f(x) is continuous at c.

• Slant Asymptote: If lim
x→∞

[f(x)− (mx+ b)] = 0, then y = mx+ b is a slant asymptote to f(x) at +∞.

• Inflection point: A point of inflection is at c if f(x) is continuous at c and the sign of concavity changes at c.

A function is increasing on an interval I if f(x1) < f(x2) for all x1 < x2 in I. Although we can use this definition to find local
max/mins, there are a few cutie (QT/quick test) ways to do so:

• QT1: Increasing/Decreasing Test. If f is differentiable on the interval I, we show that if f ′ > 0, f is increasing. If
f ′ < 0, f is decreasing. If f ′ = 0, f is constant.

• QT2: First Derivative Test Given that I contains a critical point and f is continuous at ccrit, and f is differentiable in
I but not necessarily at ccrit. Then, if f ′ > 0 to the left of ccrit and f ′ < 0 to the right, then ccrit is a local max. If it’s
the opposite, we get the local minimum.

• QT3: Concavity Given that f(x) is twice differentiable on I, then f ′′(x) exists on I. As a result if f ′′(x) > 0, f is
concave up. If f ′′ < 0, f is concave down.
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• QT4: Second Derivative Test Given that f ′′(x) is continuous near c and f ′(c) = 0, then if f ′′(c) > 0, f(c) is a local
minimum. If f ′′(c) < 0, f(c) is a local maximum. If f ′′(c) = 0, there is no verdict.

In general, the recipe to test for local max and min is to:

• Find all ccrit.

• If QT4 applies, use it.

• If it doesn’t, and if QT2 applies, use it.

• If QT2 doesn’t apply, use the basic definition of increasing/decreasing.

5.3 Curve Sketching Steps

1. Determine general behaviour:

• Find Domain / Range / Limits at ∞.

• Determine endpoints if they exist.

• Find vertical, horizontal, slant asymptotes if they exist:

2. Determine x and y intercepts.

3. Establish if f(x) is symmetrical, even, odd, and/or periodic.

4. Find f ′(x) and use this to:

• Find all critical points and f(ccrit).

• Find when f(x) is increasing/decreasing.

• Apply QT2.

• Find vertical tangents / cusps if they exist.

5. Find f ′′(x) and use it to:

• Find when f(x) is concave up/down.

• Find points of inflection if they exist.

• Optional: Use QT4 to confirm local max/min

6. Determine the absolute maximum and min by choosing the largest and smallest values of f , if they exist.
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