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1 Delta-Epsilon Proofs

1.1 Brief Overview

The formal definition of the limit lim f(x) = L:
T—C

Definition: If for any € > 0, a § > 0 can be found such that for all 0 < |z —¢| < 0, it can be proved that |f(z) — L| < e,
then lim f(z) = L.
Tr—cC

The general steps are as follows:
= Write: “For any € > 0, we want to pick a d > 0suchthat 0 < |z —¢| <d = |f(z) — L| <¢"
= Start with |f(z) — L| < € to start getting it under § control (e.g. by expressing the LHS in terms of §)

= Pick an arbitrary value of § = a (if in doubt, choose a = 1) and modify 0 < |z — ¢| < a to write x in terms of a.
Substitute this back into | f(z) — L| < € to fully express the LHS in terms of 4.

= Solve for ¢ in terms of € and pick 6 = min{a, f(e€)}.
A few tips/tricks:
= Apply the Triangle Inequality: |a + b| < |a| + |0].

= Apply the identity: |ab| = |a||b].

1
= Apply the inequality: — > for x > 0 given a > 0.
x

x4+ a

= Rememberthat 0 < |z —¢|<d = c—d <z <c+0d.

1
Example 1: (2019 Midterm, Modified) Prove lim Sedl 1.
z~>2($—|—]_)2
, 3z +1 .
For any € > 0, we want to pick a d > 0 suchthat 0 < |z —2| < § = Wfl < €. We can start with:
0
3z +1 3z+1— (22 +2x+1)
— -1l <e = 1
o < EEaY: .
2
T—
(x+1)2 ¢ (2)
z(1—x) - (3)
BTN
= | —Z [z —1] <e (4)
(z+1)
0
— =1=1 1 5
— | om|le-1-D+ @l <e (5)
7
— —-2|+1
= @12 (lz =2+ [1]) <€ (6)
9
= | —|(0+1 7
@t < )
(8)
We can set 6 = 1. If this is the case then:
0<lz—-2I<]l = 1<2z<3 <= 2<z+1<4 9)



We can bound the denominator |(z 4 1)?| by its lower bound 2? = 4 and the numerator || by its upper bound of 3,
which we can substitute back in to get:

X

3 4
- _ < < Ze —
(a: 1)2 (+1)<-(0+1)<e =4 36 1 (10)

Thus, we can pick:
4
(5:min{1,§e— 1} (11)

1 1
and we are done. Note that we could also have applied the identity — > - to bound the denominator by 17 instead.
x z+a

1.2 Special Limits

For right handed limit, we have:

Definition: If for every e > 0, a 0 > 0 can be found such that c< x < ¢+ § = |f(x) — L| < ¢, then lim = L.

z—ct

For left handed limits:

Definition: If for every € > 0, a § > 0 can be found such that c— d <2 <¢ = |f(z) — L| <¢, then lim = L.

T—Cc—

For infinite limits:

Definition: If for every M > 0, a § > 0 can be found such that 0 < |z —¢| < 6 = f(x) > M, then lim = oo.

Tr—C

Here's an example using both:

3/2
Example 2: (2019 Quiz 2H, Modified) Prove the infinite limit lim T 0.
z—2+ (x —2)2
232
For any M > 0, we want to pick ad >0 suchthat2 <z <2+ = 7(55 —op > M. We can immediately start
3/2
putting (;3_72)2 > M under ¢ control by minimizing the numerator and maximizing the denominator:
23/2 93/2
> > M 12
(x—2)2 " (246—-2)2 — )
23/2
52 1
- 232 < M (14)
23/4
= < — (15)
M

For horizontal asymptotes as x — oc:

Theorem: If for every € > 0, a A > 0 can be found such that x > A = |f(x) — L| <¢, then lim = L.
T—00



1
Example 3: (Lecture 15, Assigned) Prove the limit lim — = 0 where r > 0.

T—00 I

1
For any € > 0, we want to pick a A > 0 such that z > A — |—| < e. We can place the LHS of
x’l"

1 ’ :
— | < € straight
xr

away by minimizing the denominator by selecting the lower bound of z, which is A to get:

1 1
;<ES€:>AZ€1/T (16)

so choosing A = ¢*/" will always work.

2 Limit Theorems

Here are the limit theorems covered in class. Given lim f(x) = L and lim g(x) = M are both well defined, then:
Tr—cC r—c

Constant Limit Theorem: lim A=A
xr—rc

» Additivity Limit Theorem: lim [f(z) + g(x)]=L+ M
r—c

= Product Limit Theorem: lim [f(z)g(x)] = LM

Tr—c

= Polynomial Limit Theorem: lim P(z) = P(c) if P(x) is a polynomial.

r—c

= Rational Function Limit Theorem: lim M = £
eoeg(z) M

* Root Limit Theorem: ,lligl‘f(:c)l/” =LY
= Sandwich Limit Theorem: If hin flz) = liLn h(z) = L and f(z) < g(z) < h(z) near ¢ but not necessarily at ¢, then
T c x C
lim g(x) = L.
r—c
To help with trigonometry problems, here are a few properties you should know (and understand how to derive):

. sinxz
= lim =1
x—0 I

» sinz <z < tanx for x > 0. Since all these functions are odd, the inequality works in reverse for z < 0.

s /1—-22<cosz<1

Tip: When solving difficult trigonometry limits, try to break it up into sinx/x terms. If not possible, try to either bound the
limit using the sandwich limit theorem, or bash through applying trig identities.

3 Continuity Theorems

Here are the definitions for continuity at different points:

= Continuity at a point: f(x) is continuous at ¢ if lim = f(¢)
r—c

= Continuity on the right: f(z) is continuous on the right of ¢ if lim = f(c).

T—ct

Continuity on the left: f(x) is continuous on the left of ¢ if lim = f(c).

T—rCc—

= Continuity on open interval: f(z) is continuous on (a,b) iff f(x) is continuous at all z € (a, b).

= Continuity on closed interval: f(z) is continuous on [a, b] iff f(x) is continuous at all z € (a,b) and f(x) is continuous



from the right of @ and from the left of b.

There are also a few continuity theorems discussed in class:

4

Given f, g, is continuous at a, then f(x) + g(z) is continuous at a.

If g(z) is continuous at a and f(z) is continuous at g(a), then f(g(z)) is continuous at a.

Derivative Theorems

The derivative f’(z) is defined as:

f'(z) = lim

h—0

flz+h) - f(z)
h

where h is a dummy variable. A few definitions:

Differentiability at a point: If f'(a) exists, we say that f(z) is differentiable at a.
Differentiability of function: If f/(x) is differentiable at all z € domain of f(x), then f(z) is a differentiable function.
Differentiability on open interval: f(x) is differentiable on (a,b) if f'(x) is defined for all = € (a,b)

Differentiability on closed interval: f(z) is differentiable on [a,b] if f'(z) is defined for all z € (a,b) and the right
hand derivative at a exists and the left hand derivative at b exists.

Relation to Continuity: Given f(z) is differentiable at a, then f(x) is continuous at a.

When evaluating derivatives, there are a few theorems that we've learned. The following only apply if the derivatives of each
function exists.

Constant DT: If f(z) = C, then f'(x) = 0.
Additivity DT: (f+9) = f +¢

Product DT: (fg)' = f'g + f¢’

Power DT: If f(z) = Cz", then f'(2) = nCa"'.

Poly DT: If P(z) = apz™ 4+ ap_12" ' + -+ + a12' + ag, then P'(z) = nap,z" ' + (n — Da,_12" 2 +--- +ay.

Reciprocal DT: (}) = _fJ:
Quotient DT: (f/g) = f’gg—Qfg'

d i dfd
Chain DT: %f(g(@) =g 2)f g(z) = % - diidii

5 Features of a Graph

We can look at extrema points with derivatives:

Absolute Max: f(x) has an absolute maximum at c if f(¢) > f(x) for all z € domain of f(z).
Absolute Max in closed interval: f(x) has an absolute max on [a,b] if f(c) > f(z) for all z € [a, b].

Local Max: f(z) has a local max at ¢ if f(c) > f(x) for some open interval containing c.

Here are a few important theorems:



Theorem: Intermediate Value Theorem: Given that f(z) is continuous on [a,b] and C is some number such that
f(a) < G(a) < f(b), there exists some C' in [a,b] such that f(C) = G.

Theorem: Extreme Value Theorem: Given f(z) is continuous on [a, ], then f(z) has an absolute maximum f(c) and
an absolute minimum f(d) for some ¢, d € [a,b].

Theorem: Rolle’s Theorem: Given that f is continuous on [a,b] and f is differentiable on [a,b) and f(a) = f(b), then
there exists some ¢ € (a,b) such that f’(c) = 0. Note that there may be more than one c.

Theorem: Mean Value Theorem: Given that f(x) is continuous on [a,b] and f(z) is differentiable on (a,b), then
f(b) — f(a)

there exists some ¢ € (a,b) such that f'(c) = b
—a

5.1 Estimation

We can approximate a function f(z+Axz) as: f(z+Az) ~ f(x)+ f'(x)Ax. For example, this allows us to estimate something

d
like 29'/% as 27'/3 + —a!/3| .2,
dx =27

An approximation by itself is useless without a bound. We can create lower and upper bounds by applying the MVT between
[, + Az] and/or between [x + Az, 1] and finding the minimum and maximum values for f'(z).

5.2 Curve Sketching Prelims

We can use Fermat's theorem to determine critical points:
Definition: ¢ is a critical point of f(z) if f’(c) =0 or f'(c) DNE.

Here are some key features that might be seen on a graph:

» Concavity: If the graph of y = f(z) lies above all its tangents in I, then f(z) is concave up in I. If it lies below, then
it is concave down.

= Cusp: A point cis a cusp if f(x) is continuous at z = ¢ but lim f(z) = foo and lim+ (z) = Foo.
T—Cc™ r—C

= Vertical Tangent: A vertical tangent occurs when lim |f'(x)| = oo and f(z) is continuous at c.
r—c

= Slant Asymptote: If li_>m [f(z) — (mz + b)] = 0, then y = mx + b is a slant asymptote to f(z) at +o0.

Inflection point: A point of inflection is at ¢ if f(x) is continuous at ¢ and the sign of concavity changes at c.

A function is increasing on an interval I if f(z1) < f(z2) for all z; < x5 in I. Although we can use this definition to find local
max/mins, there are a few cutie (QT/quick test) ways to do so:

» QT1: Increasing/Decreasing Test. If f is differentiable on the interval I, we show that if f' > 0, f is increasing. If
f/ <0, fis decreasing. If f' =0, f is constant.

» QT2: First Derivative Test Given that I contains a critical point and f is continuous at ¢, and f is differentiable in
I but not necessarily at cgit. Then, if f/ > 0 to the left of cir and f/ < 0 to the right, then cit is a local max. If it's
the opposite, we get the local minimum.

» QT3: Concavity Given that f(x) is twice differentiable on I, then f”(x) exists on I. As a result if f"(z) > 0, f is
concave up. If f” <0, f is concave down.



» QT4: Second Derivative Test Given that f”(z) is continuous near ¢ and f'(c) = 0, then if f”(c) > 0, f(c) is a local
minimum. If f”(c) <0, f(c) is a local maximum. If f”(c) = 0, there is no verdict.

In general, the recipe to test for local max and min is to:
= Find all cgit.
= If QT4 applies, use it.
= If it doesn't, and if QT2 applies, use it.

» If QT2 doesn't apply, use the basic definition of increasing/decreasing.

5.3 Curve Sketching Steps
1. Determine general behaviour:
= Find Domain / Range / Limits at oo.
= Determine endpoints if they exist.
= Find vertical, horizontal, slant asymptotes if they exist:
2. Determine x and y intercepts.
3. Establish if f(x) is symmetrical, even, odd, and/or periodic.
4. Find f'(x) and use this to:
= Find all critical points and f(ceit)-
= Find when f(z) is increasing/decreasing.
= Apply QT2.
» Find vertical tangents / cusps if they exist.
5. Find f”(x) and use it to:
= Find when f(z) is concave up/down.
= Find points of inflection if they exist.
= Optional: Use QT4 to confirm local max/min

6. Determine the absolute maximum and min by choosing the largest and smallest values of f, if they exist.
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