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1 Sequences and Series
A sequence {an} is:

• increasing iff an < an+1

• non-decreasing iff ak ≤ an+1

• decreasing iff an > an+1

• non-increasing iff an ≥ an+1

Definition: We can define lim
n→∞

an = L iff for every ε > 0, there exists an integer k > 0 such that if n ≥ k, then
|an − L| < ε.

Example 1: Let us prove lim
n→∞

n

n+ 1 = 1. We find k such that
∣∣∣∣ n

n+ 1 − 1
∣∣∣∣ < ε for n ≥ k. This can be rewritten

as: ∣∣∣∣ 1
n+ 1

∣∣∣∣ < ε (1)

or |n+ 1| > 1
ε
. Thus, if we choose k = 1

ε
such that if we choose n > k = 1

ε
, then:∣∣∣∣ n

n+ 1 − 1
∣∣∣∣ =

∣∣∣∣ 1
n+ 1

∣∣∣∣ < ∣∣∣∣ 1n
∣∣∣∣ < 1

k
= ε (2)
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Therefore, lim
n→∞

n

n+ 1 = 1.

Theorem: Uniqueness of a Limit: If lim
n→∞

= L and lim
n→∞

an = M , then L = M .

Theorem: Monotonic Sequence Theorem: A bounded nondecreasing sequence converges to its least upper
bound. A bounded non increasing sequence converges to its greatest lower bound.

Theorem: Pinching Theorem for Sequences: If for large n, an ≤ bn ≤ cn and if lim
n→∞

an = L and lim
n→∞

= L,
then lim

n→∞
bn = L.

If a sequence has a limit, it is said to be convergent. Otherwise, it is divergent. This leads to the following:

1. If a sequence is convergent, it is bounded.

2. If a sequence is unbounded, it is divergent.

3. A bounded sequence is not necessarily convergent.

The limit has a few properties. Let lim
n→∞

an = L and lim
n→∞

bn = M . Then:

1. lim
n→∞

(an + bn) = L+M

2. lim
n→∞

αan = αL for α ∈ R.

3. lim
n→∞

anbn = L ·M

4. lim
n→∞

1
bn

= 1
M

for bn 6= 0,M 6= 0.

5. lim
n→∞

an
bn

= L

M
for bn 6= 0,M 6= 0.

1.1 Important Limits
• For x > 0, lim

n→∞
x1/n = 1.

• If |x| < 1, then lim
n→∞

xn = 0.

• For α > 0, lim
n→∞

1
nα

= 0.

• lim
n→∞

xn

n! = 0 for x ∈ R.

• lim
n→∞

n!
nn

= 0

• lim
n→∞

lnn
n

= 0.

• lim
n→∞

n1/n = 1.

• lim
n→∞

(
1 + x

n

)n
= ex

1.2 Series
You can expect the limit laws to be familiar:

• If
∞∑
k=0

ak = n and
∞∑
k=0

bk = M , then
∞∑
k=0

(ak + bk) = L+M .
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• If
∞∑
k=0

ak = L, then
∞∑
k=0

αak = αL for α ∈ R.

Oftentimes, we wish to set the lower bound to a higher number to do a proof (i.e. to bound a function). Then:

Theorem: If
∞∑
k=0

ak converges iff
∞∑
k=j

ak converges where j is a positive integer.

Theorem: If
∞∑
k=0

ak converges, then ak → 0 as k → ∞. Taking the contraposition, we have that if ak 6→ 0 as

k →∞, then
∞∑
k=0

ak diverges.

Note that the inverse isn’t necessarily true. If ak → 0 as k → 0, the sum does not necessarily converge.

1.3 Convergence Tests
Here are the following convergence tests:

Theorem: Integral Test: If f is continuous, decreasing, and positive on [1,∞), then:
∞∑
k=1

f(k) converges if and

only if
∫ ∞

1
f(x) dx converges.

Theorem: P Series: The p-series is:
∞∑
k=1

1
kp

(3)

which will converge if p > 1 since
∫ ∞

1

dx
xp

converges iff p > 1.

Theorem: Direct Comparison Test: Given
∑

ak and
∑

bk with ak > 0 and bk > 0:
1. If

∑
bk is convergent, and if ak ≤ bk for all sufficiently large k, then

∑
ak converges.

2. If
∑

bk is diverge and ak > bk for all k sufficiently large, then
∑

ak diverges.

Theorem: Limit Comparison Test: Given
∑

ak,
∑

bk where ak > 0 and bk > 0:

1. If lim
n→∞

an
bn

= c > 0, then both series converge or diverge.

2. If lim
n→∞

an
bn

= 0 and if
∑

bn converges, then
∑

an converges.

3. If lim
n→∞

an
bn

=∞ and if
∑

bn diverges, then
∑

an diverges.

Theorem: Alternating Series Test: Let {ak} be a sequence of positive numbers. If and only if ak+1 < ak and
ak → 0 as k →∞, then:

∞∑
k=1

(−1)k−1ak (4)

converges.
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Theorem: Absolute Convergence Test: If
∑
|ak| converges, then

∑
ak converges.

If
∑
|ak| converges, we say that

∑
ak is absolutely convergent. If

∑
ak converges, but

∑
|ak| does not, we say∑

ak is conditionally convergent.

Theorem: Root Test: Given
∑

ak, ak ≥ 0. If (ak)1/k → p as k →∞, then:
1. If p < 1, then

∑
ak converges.

2. If p > 1, then
∑

ak diverges.
3. If p = 1 the test is inconclusive.

Theorem: Ratio test: Given
∑

ak, with ak > 0. If ak+1

ak
→ λ as k →∞, then:

1. If λ < 1,
∑

ak converges.
2. If λ > 1,

∑
ak diverges.

3. If λ = 1, the test is inconclusive.

If in doubt, follow this (incomplete) check-list:

1. Check if the sequence diverges.

2. If it’s a power series, use a ratio test.

3. Use comparison + p-series test to bound a sequence by 1
np

.

4. Factor?

2 Power Series
A power series is a series in the form:

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · · (5)

The following gives the Taylor series. If a = 0, we have a special case, known as the Maclaurin series.

Theorem: If f(x) has a power series representation about a:

f(x) =
∞∑
n=0

cn(x− a)n (6)

with |x− a| < R. Then the coefficients of the series are cn = f (n)(a)
n! .

The nth degree Taylor polynomial of f about a can be written as:

Tn(x) =
n∑
i=0

f (i)(a)
i! (x− a)i = f(a) + f ′(a)

1! (x− a) + · · ·+ f (n)(a)
n! (x− a)n (7)

This comes with some remainder, which can be calculated below:

Theorem: If f(x) = Tn(x) +Rn(x) and lim
n→∞

Rn(x) = 0 for |x− a| < R. Then f is equal to the sum of its Taylor
series.
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Given that f has n+ 1 continuous derivatives on an open interval I containing a, tyhen for all x ∈ I:

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)(x− a)2

2! + · · ·+ f (n)(a)(x− a)n

n! +Rn(x) (8)

where
Rn(x) = 1

n!

∫ x

a

f (n+1)(t)(x− t)n dt (9)

This is often a difficult integral to calculate, but we can set the upper bound using the mean value theorem:

|Rn| ≤
f (n+1)(z)|x−a|n+1

(n+ 1)! (10)

where a ≤ z ≤ x is chosen to maximize f (n+1)(z). For an alternating series, we have:

Rn < |an+1| (11)

2.1 Binomial Theorem
The binomial theorem tells us:

(a+ b)k = ak + kak−1b+ k(k − 1)
2! ak−2b2 + · · ·+ k(k − 1)(k − 2) · · · (k − n+ 1)

k! ak−nbn (12)

=
k∑

n=0

(
k

n

)
ak−nbn (13)

2.2 Important Series

• ex = 1 + x+ x2

2 + x3

3 + · · · =
∞∑
n=0

xn

n! where I = (−∞,∞)

• sin x = x− x3

3! + x5

5! −
x6

7! + · · · =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)! where I = (−∞,∞).

• cosx = 1− x2

2! + x4

4! −
x6

6! + · · · =
∞∑
n=0

(−1)n x2n

(2n)! where I = (−∞,∞).

• ln(1 + x) = x− x2

2 + x3

3 − · · · =
∞∑
n=1

(−1)n+1x
n

n
for I = (−2, 1].

• 1
1− x = 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn for I = (−1, 1).

• tan−1(x) =
∞∑
n=0

(−1)n x
2n+1

2n+ 1 for [−1, 1].
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3 Fourier Series
The big idea is to write a periodic function in terms of a trigonometric basis:

Theorem: For f(t) periodic, with fundamental period T , continuous and piecewise differentiable, then:

f(t) = a0

2 +
∞∑
n=1

an cos(nωt) + bn sin(nωt) (14)

where ω = 2π
T

is known as the Fourier series of f . an and bn are Fourier coefficients. The coefficients are given by:

an = 2
T

∫ T/2

−T/2
f(t) cos(nωt) dt (15)

bn = 2
T

∫ T/2

−T/2
f(t) sin(nωt) dt (16)

for n = 1, 2, 3, . . . .

You can apply the following shortcuts:

• If f(t) is odd, then an = 0.

• If f(t) is even, then bn = 0.

4 Vector Functions
For a vector function ~f(t) which maps a scalar to a vector, the operate and differentiate the way you’ll expect. We have
the following differentiation rules:

• (~f + ~g)′(t) = ~f ′(t) + ~g′(t)

• (α~f)′(t) = αf ′(t)

• (u~f)′(t) = u(t)~f ′(t) + u′(t)~f(t)

• (~f · ~g)′(t) =
[
~f(t) · ~g(t)

]
+
[
~f ′(t) · ~g(t)

]
• (~f × ~g)′(t) =

[
~f ′(t)× ~g′(t)

]
+
[
~f ′(t)× ~g′(t)

]
• (~f ◦ u)′(t) = ~f ′(u(t))u′(t)

Definition: Let C be parametized by ~r(t) = x(t)̂i + y(t)ĵ + z(t)k̂ and be diffferentiable. Then ~r′(t) = x′(t)̂i +
y′(t)ĵ + z′(t)k̂ if not ~0, is tangent to the curve C at the point P (x(t), y(t), z(t)) and ~r′(t) points in the direction of
increasing t.

The arclength is:

s =
∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2 dt (17)

4.1 Curvature
In two dimensions, the curvature of a 2-dimensional curve is defined as:

κ =
∣∣∣∣dφds

∣∣∣∣ (18)

where:
dy
dx = y′ = tanφ =⇒ φ = tan−1(y′) (19)
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and the radius of curvature is:
r = 1

κ
. (20)

In three dimensions, there are three ways of calculating curvature:

• Let ~T be the unit tangent ~T = r′(t)
‖r′(t)‖ that points in the direction of the curve.

κ =

∥∥∥∥∥d~T
ds

∥∥∥∥∥ (21)

• For a curve ~r(t) = x(t)̂i+ y(t)ĵ + z(t)k̂, we have:

κ =

∥∥∥∥∥d~Tdt · dtds
∥∥∥∥∥ = ‖

~T ′‖
‖~r′‖

(22)

• We can also define it using the cross product:

κ = ‖
~r′(t)× ~r′

′
(t)‖

‖~r′(t)‖3
(23)

The binormal vector is given by:
~B(t) = ~T × ~N (24)

and gives the vector normal to the osculating plane. Here, the normal vector is:

~N(t) =
~T ′(t)
‖~T ′‖

(25)

5 Limits of Multivariable Functions
Suppose we have the limit:

lim
(x,y)→(0,0)

f(x, y)
g(x, y) (26)

where f(0, 0) = g(0, 0) = 0. Here are a few strategies to show if it exists or not:

• If in doubt, test if it doesn’t exist first. Try the path x = 0, y = 0, and y = mx.

• The limit will most likely not exist if the order of the denominator is higher than the numerator, and it will likely
exist if the order of the numerator is higher than the denominator.

• Use the squeeze theorem. One helpful strategy is to have the upper and lower bound be in terms of one variable.

5.1 Delta-Epsilon Proofs
Helpful tips:

• Use triangle inequality.

• Write δ restriction as a scalar function (i.e. square root)

• Attempt to bound functions of two variables in terms of a single variable.

Example 2: Suppose we wish to prove that:

lim
(x,y)→(1,1)

(x+ y) = 2 (27)

For any ε > 0 such that |f(x, y)− f(1, 1)| < ε, we can pick a δ > 0 where ‖(x, y)− (1, 1)‖ < δ. We can write this
last statement as: √

(x− 1)2 + (y − 1)2 < δ (28)
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Using the triangle inequality, we can write:

|f(x, y)− f(1, 1)| = |x+ y − 2| (29)
= |(x− 1) + (y − 1)| (30)
≤ |x− 1|+ |y − 1| (31)

=
√

(x− 1)2 +
√

(y − 1)2 (32)

≤
√

(x− 1)2 + (y − 1)2 +
√

(y − 1)2 + (x− 1)2 (33)

= 2
√

(x− 1)2 + (y − 1)2 (34)
< 2δ = ε (35)

where we used our statement from earlier for the last line. Therefore, we need to pick δ = ε

2 .

6 Partial Derivatives
The partial derivative of f(x, y) is given by:

fx(x, y) = ∂

∂x
f(x, y) = lim

h→0

f(x+ h, y)− f(x, y)
h

(36)

or for the partial derivative with respect to y:

fy(x, y) = ∂

∂y
f(x, y) = lim

h→0

f(x, y + h)− f(x, y)
h

(37)

This can be extended to an arbitrary number of dimensions. We can also have mixed partials, such as:

∂

∂x

∂f

∂x
→ ∂2f

∂x2 (38)

∂

∂y

∂f

∂x
→ ∂2f

∂y∂x
(39)

Theorem: Clairaut’s Theorem says that:
∂2f

∂y∂x
= ∂2f

∂x∂y
(40)

on every open set on which f and its partials ∂f
∂x

, ∂f
∂y

, ∂2f

∂x∂y
, ∂2f

∂y∂x
are continuous.

7 Other Important Things
• cos(nπ) = (−1)n

• cos
(nπ

2

)
=
{

(−1)n/2 n is even
0 n is odd

• sin
(nπ

2

)
=
{

0 n is even
(−1)

n−1
2 n is odd

• (−1)n + (−1)n+1 = 0

• 1 + (−1)n =
{

2 even
0 odd

• (−1)−n = (−1)n

• (−1)1−n = (−1)n+1
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