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Note: Axiom propositions, names, theorems, etc. will be taken from two sources: Prof. Sean Uppal’s notes and Prof. GDE’s
textbook: Medici. Work is taken to present the material such that differences between the two approaches can be clearly seen
and important theorems that are presented in both approaches are put in blue.

Medici uses a different notation than Uppal, even up to the font for the math. I’ve tried to replicate both styles, though for
commonly shared ideas, I do not stick to a single system.

Please let me know via discord (Qcumber#4444) if I am missing anything, there exists any typos, and especially if something
is horrendously wrong! Note that this is an unofficial resource and I am not responsible if the use of this study sheet causes you
to fail the midterm, break up with your partner, find your house burned down, or be captured by the North Korean government
to be forced to work on their nuclear missile project which leads to the destruction of the entire world.

1



MAT185 QiLin Xue

1 Axioms

Medici
A vector space V over a field Γ of elements {α, β, γ, . . . },
called scalars, is a set of elements {u,v, bmw, . . . } called
vectors, such that the following axioms are satisfied:

1. There exists an operation of vector addition, de-
noted u + v, such that for all u,v,w ∈ V,

AI. Closure: u + v ∈ V.
AII. Associativity: (u + v) + w = u + (v + w).
AIII. Zero: There exists a zero or null vector 0 ∈ V

such that u + 0 = u.
AIV. Negative: There exists an negative −u ∈ V

such that u + (−u) = 0.
2. There exists an operation of scalar multiplication,

denoted αu, such that for all u,v ∈ V and all
α, β ∈ Γ,

MI. Closure: αu ∈ V.
MII. Associativity: α(βu) = (αβ)u.
MIII. Distributivity:

(a) (α+ β)u = αu + βu
(b) α(u + v) = αu + αv

MIV. Unitary: For the identity element 1 ∈ Γ, 1u =
u.

Uppal
A real vector space is a set V together with two operations
called vector addition and scalar multiplication such that
the following axioms hold. For all vectors x,y,Z ∈ V
and scalars c, d ∈ R:

1. (AC) Additive Closure: x + y ∈ V
2. (SC) Scalar Closure: cx ∈ V .
3. (AA) Additive Associativity: (x+y)+z = x+(y+

z).
4. (Z) Zero vector: There exists a unique vector 0 ∈ V

with the property that x + 0 = x.
5. (AI) Additive Inverse: There exists a unique vector
−x ∈ V with the property that x + (−x) = 0.

6. (SMA) Scalar Multipication Associativity: (cd)x =
c(dx).

7. (DVA) Distributivity of Vector Addition: c(x+y) =
cx + cy.

8. (DSA) Distributivity of Scalar Addition: (c+d)x =
cx + dx.

9. (I) Identity: 1x = x.

1.1 Corrolaries

Theorem: The Cancellation Theorem: Let V be a vector space, and let u,v,w ∈ V. If:

u + w = v + w (1)

then:
u = v (2)

Medici
Prop I. For every u,−u ∈ V, −u + u = 0.
Prop II. For every u ∈ V, 0 + u = u.
Prop III. Let u ∈ V . Then:

(a) The zero vector 0 ∈ V is unique.
(b) The negative −u of u is unique.
(c) −(−u) = u.

Prop IV. For u,v ∈ V, u + v = v + u.
Prop V. For all u ∈ V and α ∈ Γ:

(a) 0v = 0
(b) α0 = 0
(c) If αv = 0, then either α = 0 or v = 0.

Prop VI. For all u ∈ V and α ∈ Γ, (−α)v = −(αv) =
α(−v).

Uppal
Prop I. For every x ∈ V , then 0x = 0.
Prop II. For every x ∈ V , then (−1)x = −x.
Prop III. For every x ∈ V , then −x + x = 0.
Prop IV. For every x ∈ V , then 0 + x = x.

This introduces an additional axiom:

10. (C) Commutativity: For all vectors x,y ∈ V , x +
y = y + x.

1.2 Important Facts

You should know and be able to prove the following facts:

• Every vector space is either infinite or contains only the zero vector.

• If u ∈ V and v /∈ V. Then u + v /∈ V.
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2 Subspaces

Medici
A subspace U of a vector space V is a subspace of V if
and only if U is itself a vector space over the same fiedl
Γ with the same vector addition and scalar multiplication
of V.

To show a subset is a subspace:

SI. Zero: There exists a zero vector 0 ∈ U .
SII. Closure under Vector Addition: u + v ∈ U .
SIII. Closure under Scalar Multiplication: αu ∈ U .

Uppal
A subspace of a vector V is a subset W ⊆ V that is itself
a vector space with the same operations of vector addition
and scalar multiplication as in V .

To show a subset is a subspace:

1. (AC & SC): Sums and scalar multiples of vectors
from W are in W

2. (Z) W contains the zero vector of V .
3. (AI) The additive inverse of each vector in W is in
W .

Alternative Formulation: A non-empty subset W of a
vector space V is a subspace of V if and only if cx+y ∈W
whenever x,y ∈W , and c ∈ R.

2.1 Linear Combination and Span

Medici
Definition of Linear Combination: A vector v ∈ V is a
linear combination of {v1,v2, . . . ,vn} ⊂ V if and only if
it can be written as:

v =
n∑

j=1
λjvj = λ1v1 + · · ·+ λnvn

for some λj ∈ Γ.

Definition of Span: The span of {v1,v2, . . . ,vn} ⊂ V,
denoted span{v1,v2, . . . ,vn} is given by:

span{v1,v2, . . . ,vn} =

v

∣∣∣∣∣v =
n∑

j=1
λjvj , ∀λj ∈ Γ


Here are the propositions:

Prop I. The span of {v1,v2, . . . ,vn ⊂ V is a subspace
of the vector space V.

Prop II. Let U = span{v1,v2, . . . ,vn} v V. If W
is a subspace of V containing the vectors
{v1,v2, . . . ,vn}, then U vW .

Uppal
Definition of Linear Combination: Let S be a non-
empty subset of a vector space V . A linear combination
of vectors in S is an expression of the form:

c1s1 + c2s2 + · · ·+ cksk

where s1, s2, . . . , sk ∈ S, and c1, c2, . . . , ck ∈ R.

Definition of Span: Let S be a subset of a vector space
V . If S is non-empty, then spanS is the set of all linear
combinations of vectors in S. We define span ∅ = {0}
where ∅ denotes the empty set.

We can make use of one important theorem:

Theorem: If S is a subset of a vector space V , then
spanS is a subspace of V .
Definition: We can say S spans V or S is a spanning set
for V if spanS = V .

2.2 Important Facts

Here are a few important subspaces you should be able to verify:

• The image space of A: im A , {y|y = Ax,x ∈ nR}

• The null space of A ∈ nRn, otherwise known as the solution space is given by OA , {x|Ax = 0} ⊆ nR

• If U and W are subspaces of a vector space V , then span{U ∪W} = U +W .

• The intersection of any two subspaces is a subspace.
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3 Linear Dependence

Medici
Definition of Linear Independence: A set of vectors
{v1,v2, . . . ,vn} ⊂ V is linearly independent if and only
if:

n∑
j=1

λjvj = λ1v1 + · · ·+ λnvn = 0

implies that all λj = 0.

Prop 1: If {v1,v2, . . . ,vn} ⊂ V is linearly independent

and v =
n∑

j=1
λjvj for all v ∈ V, then λj are uniquely

determined.

Theorem: Let {v1,v2, . . . ,vn} ⊂ V, where V is a
vector space. For every vk with k = 1, 2, . . . , n,
span{v1, . . . ,vk−1,vk+1, . . . ,vn} ⊂ span{v1, . . . ,vn} if
and only if {v1,v2, . . . ,vn} is linearly independent.

Corollary: Let {v1,v2, . . . ,vn} ⊂ V, where V is a vec-
tor space. For at least one vk (where 1 ≤ k ≤ n),
span{v1, . . . ,vk−1,vk+1, . . . ,vn} = span{v1, . . . ,vn} if
and only if {v1,v2, . . . ,vn} is linaerly dependent.

Uppal
Definition of Linear Dependence A list of vectors
x1,x2, . . . ,xk in a vector space V is linearly dependent if
there is a nontrivial combination of scalars c1, c2, . . . , ck

such that c1x1 + c2x2 + · · · + ckxk = 0. If the only
combination is c1 = c2 = · · · = ck, then the vectors are
linearly independent.

Theorem: Let x1,x2, . . . ,xk be a linearly independent
list of vectors in vector space V . Then:

a1x1 + · · ·+ akxk = b1x1 + · · ·+ bkxk

iff aj = bj for all j = 1, 2, . . . , k.

Extend-Reduce Theorem: Let x1,x2, . . . ,xk be a list
of vectors in a non-zero vector space V :
(a) Suppose the list is linearly independent and doesn’t

span V . If x ∈ V and x /∈ span{x1, . . . ,xk}, then
the list x1, . . . ,xk,x is linearly independent.

(b) Suppose the list is linearly dependent and spans V .
If c1x1 + · · ·+ ckxk = 0 is a non-trivial linear com-
bination, then x1,x2, . . . , x̂j , . . . ,xk spans V .
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4 Bases and Dimensions

Theorem: Fundamental Theorem: Let V be a vector space spanned by n vectors. If a set of m vectors from V is
linearly independent, then m ≤ n.

Medici
Definition of Bases: A set of vectors {e1, e2, . . . , en} ∈
V is a basis for the vector space V if and only if:

1. {e1, e2, . . . , en} is linearly independent.
2. {e1, e2, . . . , en} spans V.

Theorem: Every basis for a given vector space contains
the same number of vectors.

Definition of Dimensions: The dimension of a vector
space V, denoted dimV, is the number of vectors in any
of its bases.

Proposition: Let V be a finite dimensional vector space
with dimV = n. Then:

1. A linearly independent set of vectors in V can at
most contain n vectors.

2. A spanning set for V must at least contain n vectors.

Theorem: Let {v1,v2, . . . ,vn} ⊂ V be linearly indepen-
dent. Then for a vector v ∈ V, {v,v1,v2, . . . ,vn} is lin-
early independent if and only if v /∈ span{v1,v2, . . . ,vn}.

Theorem (Existence of Bases): Let V be a vector space
spanned by a finite set of vectors. Then every linaerly
independent set of vectors in V can be extended to a
basis for V. If V = {0}, then V has the “empty” basis.

Theorem: Let U and W be subspaces of a finite dimen-
sional vector space V. Then:

1. U is finite dimensional and dimU ≤ dimV.
2. If U ⊆ W, then dimU ≤ dimW.
3. If U ⊆ W and dimU = dimW, then U =W.

Theorem: Any spanning set for a vector space V con-
tains a basis for V.

Theorem: Let V be a vector space and dimV = n.
Then:

1. Any set {v1, . . . ,vn} ⊂ V that is linearly indepen-
dent is a basis for V

2. Any set {v1, . . . ,vn} ⊂ V that spans V is a basis
for V.

Uppal
Definition of bases: A list of vectors x1,x2, . . . ,xk

in the vector space V forms a basis for V if V =
span{x1,x2, . . . ,xk}, and x1,x2, . . . ,xk are linearly in-
dependent.

Definition of Dimensions: Let V be a vector space and
let n be a positive integer. If there is a list of vectors
x1,x2, . . . ,xn of vectors that is a basis for V , then V
has dimension n (or V is n-dimensional). The zero vector
space has dimension zero.

Corollary: Suppose x1,x2, . . . ,xn is a basis for a vector
space V . Then:

1. each vector in vector space V is a linear combination
of x1,x2, . . . ,xn since x1,x2, . . . ,xn spans V .

2. this linear combination is unique since x1, . . . ,xn is
linearly independent.

Theorem: Let V be a nonzero vector space and suppose
the list x1,x2, . . . ,xk spans V . Let x be a nonzero vector
in V , and suppose:

x = c1x1 + c2x2 + · · ·+ ckxk

If cj 6= 0 for some j = 1, 2, . . . , k then the list
x1,x2, . . . , x̂j , . . . ,xk,x is also a basis for V .

Extend-Reduce Theorem Redux: Let V be a finite di-
mensional vector space, and let x1,x2, . . . ,xk ∈ V .
(a) If dimV > k, and x1,x2, . . . ,xk are linearly inde-

pendent, then there is a basis for V that includes
the list x1,x2, . . . ,xk.

(b) If span{x1,x2, . . . ,xk} = V , then dimV ≤ k and
there is a sublist of x1,x2, . . . ,xk that is a basis for
V .

Theorem: Let U be a subspace of an n-dimensional vec-
tor space V . Then U is finite dimensional and dimU ≤ n.
Furthermore, dimU = n if and only if U = V .
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5 Proofs

5.1 Notation

• A ⇐⇒ B: A is true if and only if B is true.

• A =⇒ B: If A is true, then B is true.

• A ⇐= B: If B is true, then A is true.

• A = B: A and B are equivalent.

• A ⊆ B: A is a subset of B that may or may not include B.

• A ⊇ B: A is a superset of B (or B is a subset of A).

• A ⊂ B: A is a subset of B that does not include B (proper subset).

• A v B: A is a subspace of B.

• ¬A: not A (opposite of A).

• U ∩W : The intersection of two sets U and W : U ∩W = {x|x ∈ U and x ∈W}.

• U +W : The sum of two sets U and W : U +W = {u + w|u ∈ U and w ∈W}.

5.2 Proof Techniques

• Proof by Contradiction: To prove A is true, assume for the sake of contradiction that A is false. Continue with this line
of reasoning until you reach a contradiction. Since A is not false, it must be true.

• Proof by Contraposition: Instead of proving A =⇒ B, sometimes it is easier to prove ¬B =⇒ ¬A.

• Proof by Induction: To show that a statement is true for all integers n, you will need to show that if the statement is
true for n = k, then it is also true for n = k + 1. Finally, by showing that this statement is true for a base case (e.g.
n = 1), it automatically shows that the statement is true for all n ≥ 1.

• Casework: For complicated problems, it may be easier to break it down into easier cases to work with.

• Negation: To show that a statement is not true, you only need to find one counterexample.

• If and only if statements. Your proof will generally consist of two parts. If you wish to prove A ⇐⇒ B, you need to
show A =⇒ B and B =⇒ A.

• Showing two sets are equal: Suppose you wish to show that A = B where A,B are both sets. Oftentimes, it is possible
to directly do so, but sometimes it may be easier to show that A ⊆ B and B ⊆ A.
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