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Note: Axiom propositions, names, theorems, etc. will be taken from two sources: Prof. Sean Uppal’s notes and Prof. GDE’s
textbook: Medici. Work is taken to present the material such that differences between the two approaches can be clearly seen
and important theorems that are presented in both approaches are put in blue.

Medici uses a different notation than Uppal, even up to the font for the math. I’ve tried to replicate both styles, though for
commonly shared ideas, I do not stick to a single system.

Please let me know via discord (Qcumber#4444) if I am missing anything, there exists any typos, and especially if something
is horrendously wrong! Note that this is an unofficial resource and I am not responsible if the use of this study sheet causes you
to fail the midterm, break up with your partner, find your house burned down, or be captured by the North Korean government
to be forced to work on their nuclear missile project which leads to the destruction of the entire world.
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1 Rank
Medici

Definition: The row space of A ∈ mRn, denoted row A
is:

row , span{r1, r2, . . . , rm}

where ri ∈ Rn are the rows of A. The column space,
denoted col A is:

col A , span{c1, c2, . . . , cn}

where cj ∈ mR are the columns of A.

Proposition: Let A ∈ mRn, U ∈ mRm and V ∈ nRn.
Then row UA ⊆ row A with equality holding if U is
invertible. Furthermore, col AV ⊆ col A with equality
holding if V is invertible.

Proposition: Let {x1,x2, . . . ,xr} ⊂ mR and let U ∈
mRm be invertible. Then {x1,x2, . . . ,xr} is linearly in-
dependent if and only if {Ux1,Ux2, . . . ,Uxr} is linearly
independent.

Lemma: Let A ∈ mRn. Then row Ã = row A where
Ã is the row-reduced echelon form of A and hence
dim row Ã = dim rowA. Moreover, the nonzero rows
of Ã constitute a basis for row A.

Lemma: Let A ∈ mRn. Then:
1. The set of columns with leading “1”s
{c̃j1, c̃j2, . . . , c̃jr} of Ã, the row-reduced form of
A, constitutes a basis for col Ã

2. The set of corresponding columns
{cj1, cj2, . . . , cjr} of A constitutes a basis
for colA.

As such, dim col Ã = dim col A.

Theorem: Let A ∈ mRn. Then dim row A = dim col A.

Definition: Let A ∈ mRn. The rank of A, denoted
rank A is the common dimension of rowA and colA or:

rankA = dim colA = dim rowA

It has the following properties:
Property I If A ∈ mRn, then rank A = rank Ã.
Property II If A ∈ mRn, then rank A = rank AT .
Property III If A ∈ mRn, U ∈ mRm and V ∈ nRn,

then rank UA ≤ rank A and rank AV ≤
rank A with equality holding if U and V are,
respectively, invertible.

Theorem: Let A ∈ mRn. Then:

dim null A = n− rank A

We can determine the number of solutions to Ax = b:
• No solution: rank A < rank[A|b].
• Unique solution: rank A = rank[A|b] = n.
• Infinite solutions: rank A = rank[A|b] < n.

Uppal
Definition: Let A ∈ kRn. The rank of A is:

rankA = dim colA

where the column space is equal to:

colA = {Ax|x ∈ nR}
= {x1a1 + x2a2 + · · ·+ xnan|x1, x2, . . . , xn ∈ R}
= span{a1,a2, . . . ,a3} ⊆ kR

In other words, rankA is the number of linearly indepen-
dent columns in A. If we have C = AB, then we can
write:

colAB ⊆ colA

which directly leads to:

rankAB ≤ rankB

Lemma: Each of the columns of C ∈ mRn is a linear
combination of the columns of A ∈ mRk iff there exists
a matrix B ∈k Rn such that C = AB.

Theorem: Let A ∈ nRn. Then:
1. A is invertible iff colA =n R.
2. A is invertible iff rankA = n.

Let A ∈ kRn. The row space is defined to be:

rowA = colAT ⊆n R

Rank Theorem: For any matrix A:

dim colA = dim rowA = rankA

Theorem: Let A ∈ kRn and B ∈ nRr. Then:

rankAB ≤ min{rankA, rankB}

Theorem: Let A ∈ kRn and B ∈ kR. Then:

rankA ≤ rank[A|b].

Furthermore, the system Ax = b has a solution iff
rankA = rank[A|b].

Definition: The null space of A is:

nullA = {x|Ax = 0} ⊆ nR

and the nullity is the dimension of the null space:

nullityA = dim nullA

Rank-Nullity Theorem: For any matrix A,

rankA+ nullityA = n

where n is the number of columns in A.
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Theorem: Let A ∈ nRn. Then the following statements
are equivalent:

1. A is invertible.
2. A has full rank n
3. The rows of A are linearly independent.
4. The columns of A are linearly independent.
5. For x ∈ nR,Ax = 0 implies x = 0.
6. For z ∈ nR, zTA = 0 implies z = 0.

Theorem: Let A ∈ mRn. Then the following statements
are equivalent:

1. rank A = n
2. The columns of A are linearly independent.
3. For x ∈ nR, Ax = 0 implies x = 0.
4. ATA is invertible.
5. A has a left inverse, i.e. BA = 1 for some B ∈

nRm.

Theorem: Let A ∈ mRn. Then the following statements
are equivalent:

1. rank A = m
2. The rows of A are linearly independent.
3. For z ∈ mR, zTA = 0 implies z = 0.
4. AAT is invertible.
5. a has a right inverse, i.e., AB = 1 for some B ∈

nRm.
Lemma: Let s ∈ nR. Then, if sT s = 0, s = 0.

Definition: Let A ∈ kRn. If rankA = k, then A has full
row rank. If rankA = n, then A has full column rank.

Theorem: Let A ∈ kRn. If B ∈ rRk has full column
rank, then

rankA = rankBA.

If C ∈ nRm has full row rank, then

rankA = rankAC.

Lemma: Let A ∈ kRn. Then:

rankA = rankATA

Theorem: Let A ∈ kRn. Then:
(a) A has full column rank iff ATA is invertible.
(b) A has full row rank iff AAT is invertible.
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2 Coordinates
Medici

Proposition: Let E = {e1, . . . , en} be the standard basis
for nR. Then Q is the transformation matrix from F to E
if and only if Q =

[
f1 f2 · · · fn

]
. Morever, Pf j =

ej , with j = 1, . . . , n, where P is the transformation
matrix from E to F .

Notation: We can write the transformation matrix which
turns coordinates in F to those in E as:

ve = Pefvf

with:
Pfe = P−1

ef

Proposition: Let E =
[
e1 e2 · · · en

]
∈ Vn, where

E = {e1, · · · , en} is a basis for V and λ ∈ nR. If:

Eλ = 0

then λ = 0. Furthermore, if:

Eλ = Eµ

where µ ∈ nR, then λ = µ.

Theorem: Let V be a vector space with basis E =
{e1, . . . , en} and let v1 · · ·vm ∈ V with coordinates
v1, . . . ,vm ∈ nR using E. Then: {v1 · · ·vm} is linearly
independent in V if and only if {v1, . . . ,vm} is linearly
independent in nR.

Uppal
Definition: Let α = v1,v2, . . . ,vn be a basis for an n-
dimensional vector space V . Write any x ∈ V as a unique
linear combination:

x = c1v1 + c2v2 + · · ·+ cnvn

of the basis vectors v1,v2, . . . ,vn. The scalars
c1, c2, . . . , cn are the coordinates of x with respect to
the basis α. The vector:

[x]α =


c1
c2
...
cn

 ∈ nR

is the coordinate vector of x with respect to the basis α.

Theorem: Let α = v1,v2, . . . ,vn be a basis for an n-
dimensional vector space V . Then for any x,y ∈ V and
c ∈ R,:

[cx + y]α = c[x]α + [y]α
Theorem: Let α = v1, . . . ,vn be a basis for a vector
space V , and let x1, . . . ,xn ∈ V. The list [x1]α, . . . , [xn]α
is linearly independent innR if and only if the list
x1, . . . ,xn is linearly independent in V .

Definition: Let α = v1,v2, . . . ,vn and β =
w1,w2, . . . ,wn be two bases for an n-dimensional
vector space V . The n × n matrix Pβα =[
[v1]β [v2]β · · · [vn]β

]
is called the change of ba-

sis matrix from α to β (or the matrix of transition from
α to β) and is the matrix such that:

[x]β = Pβα[x]α

for every x ∈ V .

Theorem: Let α = v1,v2, . . . ,vn be a basis for an n-
dimensional vector space V . If β = w1,w2, . . . ,wn is
another basis for V , then the change of basis matrix Pβα
is invertible, and its inverse is Pαβ .
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3 Determinants
Prof. Uppal and GDE took two very different approaches here. Uppal started from the fundamental axioms that describes
the determinant function and worked out the properties from there, while GDE showed how the determinant function naturally
appears when solving systems of linear equations.

Medici
Motivation: When solving a linear equation Ax = b,
the general solution for xi is in the form of:

xi = hot mess
∆

where the numerator is a function that depends on A, b,
and changes for each i. However, the denominator ∆ is
constant and only depends on the entries in A. We call
∆ the determinant of A.

Theorem: For a 2× 2 matrix A =
[
a b
c d

]
, we have:

∆ = ad− bc

Theorem: For a 3 × 3 matrix A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

,
the determinant is:

∆ = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a13a22a31 − a12a21a33

We can remember this using Sarrus’s rule:

a11 a12 a13 a11 a12
↘↗ ↘↗ ↘↗ ↘↗

a21 a22 a23 a21 a22
↘↗ ↘↗ ↘↗ ↘↗

a31 a32 a33 a31 a32

If we multiply along the diagonals, we can sum up the blue
diagonals and subtract from it the red diagonals to get the
determinant. Note that this works for 2 × 2 matrices as
well.

Definition: Let A =

r1
...

rn

 ∈ nRn where ri are the rows

of A, be arbitrary. A determinant function is any function
∆n : nRn 7→ R that satisfies the following properties:

DI ∆[E(1; i, j)A] = ∆n(A) where E(1; i, j) is an ele-
mentary matrix of Type III. In other terms:

∆n



r1
...

ri−1
ri + rj
ri+1
...

rn


= ∆n(A)

for i, j = 1, . . . , n, i 6= j.

Uppal
Definition: The determinant of a 2 × 2 matrix A is the
unique function: det : M2×2(R) → R defined on the
rows of A that satisfies:
(a) The determinant function is a linear function on

each row of A when the other row is held fixed.
This is known as the multilinearity property:

det
[
a1 + ca′1

a2

]
= bdet

[
a1
a2

]
+ cdet

[
a′1
a2

]
for all b, c ∈ R.

(b) The alternating property:

det
[
a1
a2

]
= −det

[
a2
a1

]

(c) det
[
e1
e2

]
= 1. In other words, det I2 = 1 where I2

is the 2× 2 identity matrix.

Property: This leads to the following properties:
(a) If A has equal rows, then detA = 0.
(b) If A has an entire row of zeros, then detA = 0
(c) If the rows of A are linearly dependent, then

detA = 0.

Theorem: For a 2 × 2 matrix, the determinant is given
by:

det
[
a11 a12
a21 a22

]
= a11a22 − a12a21

Theorem: Any real-valued function f defined on the rows

of a 2 × 2 matrix A =
[
a1
a2

]
that satisfies the first two

properties, satisfies:

f(A) = (detA)f(I)

Definition: A non-zero function f that satisfies (i) and
(ii) is called a determinant function. If f(I) = 1, then f
is the determinant.
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DII ∆n[E(λ; i)A] = λ∆n(A) where E(λ; i) is an ele-
mentary matrix of type II. In other terms:

∆n


r1
...
λri
...

rn

 = λ∆n(A)

for λ ∈ R, i = 1, . . . , n. That is, ∆n is homogenous
in each row.

Properties Let A ∈ nRn be arbitrary. A determinant
function must satisfy:

1. If A has a zero row, then ∆n(A) = 0.
2. ∆n[E(λ; i, j)A] = ∆n(A), i, j = 1, . . . , n, i 6= j.

For example:

∆n


r1
...

ri + λrj
...

rn

 = ∆n(A)

3. ∆n[E(i, j)A] = −∆n(A), i, j = 1, . . . , n, i 6= j,
where E(i, j) is an elementary matrix of the first
type:

∆n



r1
...
ri
...

rj
...

rm


= −∆n



r1
...

rj
...
ri
...

rm


4. If the rows of A are linearly dependent, then

∆n(A) = 0. In particular, if A has two identical
rows, then ∆n(A) = 0.

5. For any p,q ∈ Rn, any λ, µ ∈ R and i = 1, . . . , n,:

∆n



r1
...ri−1

λp + µq
ri+1
...

rn


= λ∆n



r1
...ri−1

p
ri+1
...

rn


+ µ∆n



r1
...ri−1

q
ri+1
...

rn


Proposition: Let ∆n : nRn 7→ R be a determinant func-
tion and D ∈ nRn be a diagonal matrix whose diagonal
components are d1, . . . , dn. Then:

∆n(D) = ∆n(1)
n∏
k=1

dk

Definition: A function f on the rows of matrix A is called
multilinear if, for each j = 1, 2, . . . , n, and for all b, c ∈ R:

f




a1
...

baj + ca′j
...

an



 = b




a1
...

aj
...

an



+ cf




a1
...

a′j
...

an




Definition: A function f on the rows of matrix A is called
alternating if for all j 6= k:

f





a1
...aj
...

ak
...

an




= −f





a1
...ak
...

aj
...

an




Theorem: If f is an alternating real-valued function de-
fined pon the rows of an n×n matrix A. If any two rows
of A are equal, then f(A) = 0.

Definition: The ij minor of an n × n matrix A is the
(n− 1)× (n− 1) matrix obtained from A by omitting or
deleting the ith row and jth column of A. The ij minor
is denoted as Aij .

Theorem: Any alternating, multilinear function f defined
on the rows of A satisfies the equation:

f (A) = (a11 detA11 − a12 detA12 + a13 detA13)f(I)

Definition: The determinant of a 3 × 3 matrix A is the
unique alternating multilinear function on the rows of A
whose value on the identity matrix is 1. We denote this
function detA.

Theorem: There exists a unique alternating multilinear
function f : Mn×n(R)→ R satisfying f(In) = 1 which is
called the determinant function. We write f(A) = detA
and:

detA =
n∑
j=1

(−1)i+jaij detAij

for i = 1, . . . , n. In addition, any alternating multilinear
function f satisfies f(A) = (detA)f(I). Theorem: If

the rows of A ∈ Mn×n(R) are linearly dependent, then
detA = 0.

Theorem: If A ∈Mn×n(R) is a diagonal matrix, then

detA =
n∏
i=1

aii.
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Proposition: Let ∆n : nRn 7→ R be a determinant func-
tion and U = [uij ] ∈ nRn be an upper-triangular matrix.
Then:

∆n(U) = ∆n(1)
n∏
k=1

ukk

Lemma: Let ∆n : nRn 7→ R be a determinant function
and A ∈ nRn. Then:

∆n(A) = κ(A)∆n(1)

where κ(A) is a constant depending on A.

Theorem II: Let ∆n : nRn 7→ R and ∆̂n : nRn 7→ R be
determinant functions (i.e satisfies DI and DII) where ∆̂n

also satisfies:
∆̂n(1) = 1

Then:
∆n(A) = ∆̂n(A)∆n(1)

Furthermore, if ∆n(1) = 1, then ∆n(A) = ∆̂nA. That
is, the determinant function is unique.

Definition: The determinant of A ∈ nRn is ∆n(A)
where ∆n : nRn 7→ R is the unique determinant function
satisfying:

DI ∆n[E(1; i, j)A] = ∆n(A), i, j = 1, . . . , n, i 6= j
DII ∆n[E(λ; i)A] = λ∆n(A), i = 1, . . . , n
DIII ∆n(1) = 1.
provided the function exists.

Definition: The (i, j)-minor matrix of A ∈ nRn is
Mij(A) ∈ n−1Rn−1 obtained from A by eliminating the
ith row and jth column.

Definition: The function det
n

: nRn 7→ R of A = [aij ] ∈
nRn is:

det
n

A =
n∑
k=1

(−1)k+jakj det
n−1

Mkj

for any column j = 1, . . . , n, n > 1 and det
1

[a] = a.

Theorem: The function det
n

: nRn 7→ R is the determi-
nant.

Theorem: The determinant of elementary matrices are:

det E(i, j) = −1
det E(λ; i) = λ

det E(λ; i, j) = 1

Cauchy-Binet Product Theorem: Let A,B ∈ nRn.
Then:

det AB = det A det B

Transpose Theorem: Let A,B ∈ nRn. Then:

det AT = det A

Theorem: Let a1,a2, . . . ,an denote the rows of an n×n
matrix A. Then:

det


a1
...

ai + caj
...

an

 = det


a1
a2
...

an


In other words, adding a multiple of one row to another
does not change the value of detA.

Note: We also know that:
• By the alternating property of the determinant, in-

terchanging any two rows changes the sign of the
determinant.

• By the multilinear property of the determinant, mul-
tiplying any row by a scalar c changes the value of
the determinant by a factor of c.

Theorem: Let R be the reduced echelon form of A.
Then:

detA = cdetR

where c 6= 0.

Theorem: A is invertible if and only if detA 6= 0.

Product Theorem: Let A and B be n × n matrices.
Then:

detAB = detAdetB

Theorem: If A ∈Mn×n(R) is invertible, then detA−1 =
(detA)−1.

Definition: Let A be an n × n matrix. The adjoint of
A, denoted adjA, is the n × n matrix whose ij entry is
(−1)i+j detAji.

Theorem: Let A be an n× n matrix. Then:
1. A(adjA) = (detA)In
2. If A is invertible, A−1 = adjA

detA .

Note: The formula for A−1 above is not an efficient way
to compute the inverse for n > 3. In general, it’s much
quicker to use the Gauss-Jordan algorithm. However, a
consequence of the above theorem is that we can compute
detA by expanding along columns instead of rows.

Theorem: Let A be an n × n matrix. For any fixed
j = 1, 2, . . . , n:

detA =
n∑
i=1

(−1)i+jaij detAij

Corollary: Let A be an n× n matrix. Then:

detAT = detA

7
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This means we can write the determinant formula s:

det A =
n∑
j=1

(−1)k+jakj det Mkj

for any row k = 1, . . . , n.

Theorem: Let A ∈ nRn. Then A is invertible if and
only if det A 6= 0.

Corollary: Let A ∈ nRn be invertible. Then:

det A−1 = 1
det A

Maclaurin-Cramer Rule: Let:

A =
[
c1 · · · cj · · · cn

]
∈ nRn

be invertible. Then the unique solution to Ax = b, where
x = [xi] ∈ nR is given by:

xi = det Ai

det A

where Ai is A with the ith column replaced by b.

Definition: The (i, j)-cofactor of a matrix A ∈ nRn is:

cij(A) = (−1)i+j det Mij(A)

such that we can write the determinant as:

det A =
n∑
j=1

akjckj

Theorem: We have:
n∑
j=1

aijckj =
{

det A i = k

0 = i 6= k

Definition: The adjoint of a matrix A ∈n Rn is:

adj A = CT ∈ nRn

where C = [cij ] ∈ nRn and cij(A) is the (i, j)-cofactor
of A.

Theorem: Let A ∈ nRn. Then:

Aadj A = (adj A)A = (det A)1

If A is invertible:

A−1 = adj A
det A

Cramer’s Rule: Suppose A is invertible. Then the unique
solution to the system of equations Ax = b is:

x = A−1b

= 1
detA (adjA)b

but the ith entry of the product (adjA)b is:

n∑
j=1

(−1)i+jbj detAji

which is the determinant of the matrix Bi whose
columns are a1,a2, . . . ,ai−1,b,ai+1,an where the
a1,a2, . . . , âi, . . . ,an are the columns of A. In other
words:

xi = detBi
detA

for each i = 1, 2, . . . , n. See a beautiful visualization by
3b1b.

Theorem: If all entries of a matrix are integers, its de-
terminant is an integer.
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