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Note: The treatment of these tutorial questions are not always very rigorous. The general ideas however for a completely
rigorous proof are provided and should not be difficult to complete.

1 Tutorial Problems

Problem One

(a) The vector space must be {x} where x = 0. This is because the zero vector belongs in all vector spaces, and if this space
only has one vector, then it must be the zero vector.

(b) We have:

cx = (c+ d− d)x (1)
= (c− d+ d)x (2)
= (c− d)x + cx (DSA) (3)

(4)

We have a vector v ≡ (c− d)x such that:
v + cx = cx (5)

Per proposition 4, we must have v = 0. Since x can be nonzero, then this means that (c− d) = 0 (Z) or c = d. Alternatively,
we could arrive at this in a much easier way using the cancellation theorem.

(c) Proof by contradiction: Suppose for the sake of contradiction that a vector space V consists of N distinct vectors with
N > 0. Per SC, if x ∈ V , then λx ∈ V with λ ∈ R. However, there are infinite possible values of λ. We now need to show
that λ1x 6= λ2x if x 6= 0 and λ1 6= λ2. From (b), we have determined that if the two vectors are equal, then it must demand
that λ1 = λ2, which isn’t satisfied here, and thus we have found a contradiction. The vector space can however consist of one
vector, the zero vector.

Problem Two

(i) Since we are using normal addition and scalar multiplication, then the addition and multiplication axioms are satisfied. We
now need to show that this is closed. Let x = a

b
and y = c

d
with b, d 6= 0 and gcd(a, b), gcd(b, d) 6= 0. We need to show that

their sum is also a rational number:
x+ y = ad+ cb

bd
(6)

and since it can be written as a fraction, x+ y is also rational. Note that from our earlier condition, bd 6= 0. Similarly for scalar
multiplication by λ, we have:

λx = λa

b
(7)

which is also a fraction.

(ii) We first make sure that the space is closed under addition:

A + B =
[
1 0
a 1

] [
1 0
b 1

]
=
[

1 0
a+ b 1

]
(8)
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Addition only changes the bottom left entry, and modifies it under normal addition rules. As a result, both addition closure and
addition axioms will be satisfied since the set of all real numbers is a vector space. Similarly, scalar multiplication only affects
the bottom left corner in the regular way, so this is a vector space.

(iii) So many things are violated here! Take associativity of addition for example:

(x + x) + y = y + y (9)
= x (10)

but:

x + (x + y) = x + y (11)
= y (12)

Problem Three

We first note that a1 = b1 ≡ λ1 and a2 = b2 ≡ λ2, otherwise commutativity does not hold. Also notice that the first index is
independent from the second index during addition and scalar multiplication. As a result, we consider the simpler problem. Is
the following a vector space?

x + y = a(x+ y) (13)

From associativity, we have:

(c+ d)x = cx + dx = λ1(cx+ dx) = λ1(c+ d)x (14)

but also

(c+ d)x = (c+ d)x (15)

which implies that λ1 = λ2 = a1 = b1 = a2 = b2 = 1.

Problem Four

We only need to worry about closure since regular matrices are a vector space. We can tell that the vector space is closed under
addition. Let w(A) be the weight of a magic square A ∈ Mn, then w(A + B) = w(A) + w(B). Formally, let A = [aij ] and
B = [bij ]. Then:

A + B = [aij + bij ] (16)

The sum of the mth row of a magic square A is given by Sm(A):

Sm(A) =
n∑

k=1
amk (17)

and thus:

Sm(A + B) =
n∑

k=1
(amk + bmk) =

n∑
k=1

amk +
n∑

k=1
ank = Sm(A) + Sm(B) (18)

and similar reasoning for the columns and diagonals. We can also show that this is closed under scalar multiplication:

Sm(λA) =
n∑

k=1
λamk = λ

n∑
k=1

amk = λSm(A) (19)

Remarks: It’s interesting that this is almost closed under matrix multiplication, we can represent multiplication of two matrices
by:

AB =
[

n∑
p=1

aipbpj

]
(20)
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and thus:

Sm (AB) =
n∑

k=1

n∑
p=1

ampbpk (21)

We can interchange the sums:

=
n∑

p=1

n∑
k=1

ampbpk (22)

=
n∑

p=1

(
amp

n∑
k=1

bpk

)
(23)

=
n∑

p=1
(amp · Sp(B)) (24)

= Sp(B) ·
n∑

p=1
amp (25)

= Sp(B) · Sm(B) (26)

However for a magic square, Si = Sj for any 1 ≤ i, j ≤ n so this means that:

Sm(AB) = Sm(A)Sm(B) (27)

In words, this means that for any row in the product AB, the sum will equal to the product of the weights of the original two
matrices. However, this result is not true for columns or diagonals.
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