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Note: The treatment of these tutorial questions are not always very rigorous. The general ideas however for a completely
rigorous proof are provided and should not be difficult to complete.

1 Tutorial Problems

Problem One

(a) From the subspace test theorem, we must show three things:

(SI) We propose that the zero vector is 0 =
[
0 0
0 0

]
which belongs in both U and W .

(SII) If u1, u2 ∈ U , then u1 + u2 ∈ U . This is because the top right entry will always be zero, and the matrix will always be
in 2R2. Similar reasoning applies to V .

(SIII) The exact same reasoning applies as above.

As a result, U and W are both subspaces of 2R2.

(b) The intersection of U and W is: [
a 0
0 b

]
since the top right and bottom left diagonal entries must all be zero. The other entries are free to be anything in R.

(c) Yes, per the same reasoning as (a).

Problem Two

Proof. Let u,v ∈ U ∩ V . We need to show that:

(SI) If a vector 0 is the zero vector of both U and V , then it is also the zero vector of U ∩ V .

(SII) We have u + v ∈ U by the given statement and also u + v ∈ V . So by definition, u + v ∈ U ∩ V .

(SIII) The exact same reasoning applies as above.

Problem Three

(a) We have:

U + W =
{[

e f
g h

] ∣∣∣∣∣e, f, g, h ∈ R

}
= 2R2 (1)

Proof. Let u =
[
a 0
b c

]
∈ U and v =

[
x y
0 z

]
∈ V . Then: u + v =

[
a + x y

b y + c

]
. Since all of these entries have a domain

of R and are independent from each other, any matrix in 2R2 can be created.
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2 UNOFFICIAL TUTORIAL PROBLEMS

(b) Yes. Any vector space is a subspace of itself.

Problem Four

Proof. Let u ∈ U and w ∈W . We need to show that:

(SI) The zero vector is defined such that 0x = 0 where x ∈ V . This means that the zero vector will be the same for all
subsets of V .

(SII) We can write each vector in U + W as a composition of two vectors. For example, we have u1 + w1 ∈ U + W by the
given statement as well as u2 + w2 ∈ U + W . Therefore, the sum of these two vectors is:

u1 + u2 + v1 + v2 (2)

which is in U + W .

(SIII) Same reasoning as above.

2 Unofficial Tutorial Problems

Problem One

Proof. To prove 185 is odd, let k = 92 such that 185 = 2k + 1 and therefore it is odd by definition. To prove that −420 is
odd, pick k = −210 such that −420 = 2k and therefore it is even by definition.

Problem Two

If m, n are odd, we can write them in the form of m = 2k1 + 1 and n = 2k2 + 1 such that:

m + n = 2(k1 + 1 + k2) (3)

If we pick k = k1 + 1 + k2, then m + n is even by definition. Note: We can also prove this via modular arithmetic. We have:

m ≡ 1 (mod 2)
n ≡ 1 (mod 2)

Adding them, we get:
m + n ≡ 2 (mod 2) =⇒ m + n ≡ 0 (mod 0)

Problem Three

Two integers m and n either have the parity, or they do not have the parity. We will show that if they have different parity,
they will not be even. WLOG, let m = 2k1 and let n = 2k2 + 1 such that:

m + n = 2(k1 + k2) + 1

and we can choose k1 + k2 to be k to show that m + n is odd. We also want to use the proposition that being odd or even is
mutually exclusive.

Problem Four

For the sake of contradiction, assume that k divides p! + 1 (which can be written as k | p! + 1. This means that p! + 1
k

is an
integer, or:

p(p− 1)(p− 2) · · · (2)(1) + 1
k

= p(p− 1)(p− 2) · · · (2)(1)
k

+ 1
k

Since 2 ≤ k ≤ p, the first term is an integer. For the sum to also be an integer, the second term also needs to be an integer.
However, 1/k is never an integer for k 6= 1, so our original assumption is false.
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3 TUTORIAL WORKSHEET

Problem Five

For the sake of contradiction, assume there are a finite number of primes. If so, multiply all the primes together and add one.
By similar reasoning as in problem four, this cannot be divided by any number except 1 and itself, and thus is a new prime.
Asa result, there are an infinite number of primes.

Problem Six

First, assume that a solution exists. If the solution exists, we will show that it must be in V .

Assume for the sake of contradiction that x /∈ V . Then, we have: x = v + −u from the cancellation theorem. From the
closure axioms, then x ∈ V . Now we show that the solution must exist. Again, this is trivial under the closure axiom.

3 Tutorial Worksheet

Task 2.1

The vector (0, a, 0) ∈ Y and (0, 0, b) ∈ Z. Therefore, the intersection results in (0, 0, 0) and Y + Z = (0, a, b).

Task 2.2

Let V = Y and W = Z. Then (0, 3, 3) ∈ V + W but (0, 3, 3) /∈ V ∪W .

Task 2.3

• This is the definition of the intersection.

• V is a subspace, so by definition cs ∈ V since s ∈ V .

• Same reasoning as above.

• The vector cs is in both V and W so cs ∈ V ∩W .

• See official problem set for how to finish.

Task 2.4

No, it’s not always a subspace. See task 2.2.

Task 2.5

The subspace U represents a line with the same slope that passes through the origin and p represents the offset from the origin.

Task 2.6

Notice that the line L in the previous task is only not a suspace because the zero vector does not exist. We want a vector 0
such that x+0 = x and the only zero vector that can do this is 0 = (0, 0). However, 0x = 0 is not necessarily contained in L.

Now, we can define the zero vector to be 0 = (p, 0) such that 0x = 0 always and (p, 0) ∈ L (see the geometric interpretation
of the previous task). Note that R2

p is not a subspace of R2 because the rules for scalar multiplication and addition is different.
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