MAT185 Tutorial 2

QiLin Xue

January 25, 2021

Note: The treatment of these tutorial questions are not always very rigorous. The general ideas however for a completely rigorous proof are provided and should not be difficult to complete.

1 Tutorial Problems

Problem One

(a) From the subspace test theorem, we must show three things:
(SI) We propose that the zero vector is $\mathbf{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ which belongs in both U and W.
(SII) If $u_{1}, u_{2} \in U$, then $u_{1}+u_{2} \in U$. This is because the top right entry will always be zero, and the matrix will always be in ${ }^{2} \mathbb{R}^{2}$. Similar reasoning applies to V.
(SIII) The exact same reasoning applies as above.
As a result, U and W are both subspaces of ${ }^{2} \mathbb{R}^{2}$.
(b) The intersection of U and W is:

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

since the top right and bottom left diagonal entries must all be zero. The other entries are free to be anything in \mathbb{R}.
(c) Yes, per the same reasoning as (a).

Problem Two

Proof. Let $\boldsymbol{u}, \boldsymbol{v} \in U \cap V$. We need to show that:
(SI) If a vector $\mathbf{0}$ is the zero vector of both U and V, then it is also the zero vector of $U \cap V$.
(SII) We have $\boldsymbol{u}+\boldsymbol{v} \in U$ by the given statement and also $\boldsymbol{u}+\boldsymbol{v} \in V$. So by definition, $\boldsymbol{u}+\boldsymbol{v} \in U \cap V$.
(SIII) The exact same reasoning applies as above.

Problem Three

(a) We have:

$$
U+W=\left\{\left.\left[\begin{array}{ll}
e & f \tag{1}\\
g & h
\end{array}\right] \right\rvert\, e, f, g, h \in \mathbb{R}\right\}={ }^{2} \mathbb{R}^{2}
$$

Proof. Let $\boldsymbol{u}=\left[\begin{array}{ll}a & 0 \\ b & c\end{array}\right] \in U$ and $\boldsymbol{v}=\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] \in V$. Then: $\boldsymbol{u}+\boldsymbol{v}=\left[\begin{array}{cc}a+x & y \\ b & y+c\end{array}\right]$. Since all of these entries have a domain of \mathbb{R} and are independent from each other, any matrix in ${ }^{2} \mathbb{R}^{2}$ can be created.
(b) Yes. Any vector space is a subspace of itself.

Problem Four

Proof. Let $\boldsymbol{u} \in U$ and $\boldsymbol{w} \in W$. We need to show that:
(SI) The zero vector is defined such that $0 \boldsymbol{x}=\mathbf{0}$ where $x \in V$. This means that the zero vector will be the same for all subsets of V.
(SII) We can write each vector in $U+W$ as a composition of two vectors. For example, we have $\boldsymbol{u}_{1}+\boldsymbol{w}_{1} \in U+W$ by the given statement as well as $\boldsymbol{u}_{2}+\boldsymbol{w}_{2} \in U+W$. Therefore, the sum of these two vectors is:

$$
\begin{equation*}
\boldsymbol{u}_{1}+\boldsymbol{u}_{\mathbf{2}}+\boldsymbol{v}_{1}+\boldsymbol{v}_{2} \tag{2}
\end{equation*}
$$

which is in $U+W$.
(SIII) Same reasoning as above.

2 Unofficial Tutorial Problems

Problem One

Proof. To prove 185 is odd, let $k=92$ such that $185=2 k+1$ and therefore it is odd by definition. To prove that -420 is odd, pick $k=-210$ such that $-420=2 k$ and therefore it is even by definition.

Problem Two

If m, n are odd, we can write them in the form of $m=2 k_{1}+1$ and $n=2 k_{2}+1$ such that:

$$
\begin{equation*}
m+n=2\left(k_{1}+1+k_{2}\right) \tag{3}
\end{equation*}
$$

If we pick $k=k_{1}+1+k_{2}$, then $m+n$ is even by definition. Note: We can also prove this via modular arithmetic. We have:

$$
\begin{aligned}
m & \equiv 1 \\
& (\bmod 2) \\
n & \equiv 1
\end{aligned} \quad(\bmod 2)
$$

Adding them, we get:

$$
m+n \equiv 2 \quad(\bmod 2) \Longrightarrow m+n \equiv 0 \quad(\bmod 0)
$$

Problem Three

Two integers m and n either have the parity, or they do not have the parity. We will show that if they have different parity, they will not be even. WLOG, let $m=2 k_{1}$ and let $n=2 k_{2}+1$ such that:

$$
m+n=2\left(k_{1}+k_{2}\right)+1
$$

and we can choose $k_{1}+k_{2}$ to be k to show that $m+n$ is odd. We also want to use the proposition that being odd or even is mutually exclusive.

Problem Four

For the sake of contradiction, assume that k divides $p!+1$ (which can be written as $k \mid p!+1$. This means that $\frac{p!+1}{k}$ is an integer, or:

$$
\frac{p(p-1)(p-2) \cdots(2)(1)+1}{k}=\frac{p(p-1)(p-2) \cdots(2)(1)}{k}+\frac{1}{k}
$$

Since $2 \leq k \leq p$, the first term is an integer. For the sum to also be an integer, the second term also needs to be an integer. However, $1 / k$ is never an integer for $k \neq 1$, so our original assumption is false.

Problem Five

For the sake of contradiction, assume there are a finite number of primes. If so, multiply all the primes together and add one. By similar reasoning as in problem four, this cannot be divided by any number except 1 and itself, and thus is a new prime. Asa result, there are an infinite number of primes.

Problem Six

First, assume that a solution exists. If the solution exists, we will show that it must be in V.
Assume for the sake of contradiction that $\boldsymbol{x} \notin V$. Then, we have: $\boldsymbol{x}=\boldsymbol{v}+-\boldsymbol{u}$ from the cancellation theorem. From the closure axioms, then $x \in V$. Now we show that the solution must exist. Again, this is trivial under the closure axiom.

3 Tutorial Worksheet

Task 2.1

The vector $(0, a, 0) \in Y$ and $(0,0, b) \in Z$. Therefore, the intersection results in $(0,0,0)$ and $Y+Z=(0, a, b)$.

Task 2.2

Let $V=Y$ and $W=Z$. Then $(0,3,3) \in V+W$ but $(0,3,3) \notin V \cup W$.

Task 2.3

- This is the definition of the intersection.
- V is a subspace, so by definition $c s \in V$ since $s \in V$.
- Same reasoning as above.
- The vector $c s$ is in both V and W so $c s \in V \cap W$.
- See official problem set for how to finish.

Task 2.4

No, it's not always a subspace. See task 2.2.

Task 2.5

The subspace U represents a line with the same slope that passes through the origin and \boldsymbol{p} represents the offset from the origin.

Task 2.6

Notice that the line L in the previous task is only not a suspace because the zero vector does not exist. We want a vector $\mathbf{0}$ such that $\boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$ and the only zero vector that can do this is $\mathbf{0}=(0,0)$. However, $0 \boldsymbol{x}=\mathbf{0}$ is not necessarily contained in L.

Now, we can define the zero vector to be $\mathbf{0}=(\boldsymbol{p}, 0)$ such that $0 \boldsymbol{x}=\mathbf{0}$ always and $(\boldsymbol{p}, 0) \in L$ (see the geometric interpretation of the previous task). Note that \mathbb{R}_{p}^{2} is not a subspace of \mathbb{R}^{2} because the rules for scalar multiplication and addition is different.

