# MAT185 Tutorial 3 

QiLin Xue

February 2, 2021

Note: The treatment of these tutorial questions are not always very rigorous. The general ideas however for a completely rigorous proof are provided and should not be difficult to complete.

## 1 Tutorial Problems

## Problem One

(a) We want to be able to have $a, b, c$, and $d$ such that:

$$
\begin{equation*}
5 x^{4}+5 x^{3}+5 x^{2}+13 x+4=a x^{2}+a x+a+b x^{3}+b x^{2}+2 b x+c x^{3}+c x^{2}+c+d x^{4}+8 d x \tag{1}
\end{equation*}
$$

or more suggestively:

$$
\begin{align*}
5 x^{4} & =d x^{4}  \tag{2}\\
5 x^{3} & =(b+c) x^{3}  \tag{3}\\
5 x^{2} & =(a+b+c) x^{2}  \tag{4}\\
13 x & =(a+2 b+8 d) x  \tag{5}\\
4 & =a+c \tag{6}
\end{align*}
$$

Solving, we get $d=5, a=0, c=4, b=1$ using every equation except the fourth one. However, we quickly realize that $13 \neq 0+2(1)+8(5)$ and as a result, it is not in the span.
(b) No, because quartic equations have five degrees of freedom but the subset $S$ only has four degrees of freedom.

## Problem Two

(i) False. Let $\boldsymbol{x}_{1}=\hat{\boldsymbol{i}}$ and $\boldsymbol{y}_{1}=\hat{\boldsymbol{j}}$ in $\mathbb{R}^{2}$. Adding the two spans of these two vectors spans the entire vector space. However, the span of $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$ only gives a straight line
(ii) True. The span of $U \cup W$ consists of linear combinations of vectors that are in $U \cup W$ which we have proved last time is a subspace and we have also proved that $U \cup W=U+W$.

## Problem Three

Notice that since $S$ is a subset, then we may have $\operatorname{span} S \notin S$ since $S$ is not necessarily a subspace. However, span $S \in V$ is a subspace. Suppose there is another subspace $W \in V$ such that $S \in W$. Then by definition of the subspace, linaer combinations of vectors in $S$, we must have span $S \in W$. Let us then define another subspace $X=\operatorname{span} S$.

To summarize, we have shown that all subspaces of $V$ contain $\operatorname{span} S$ and there is one subspace of $V$ that is span $S$. Therefore, the intersection of all subspaces must be span $S$.

## 2 Tutorial Worksheet

## Task 2.1

Yes it is possible:

$$
\begin{equation*}
\frac{1}{14} \boldsymbol{v}_{1}+\frac{1}{14} \boldsymbol{v}_{2}=\nVdash \tag{7}
\end{equation*}
$$

where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in S$.

## Task 2.2

Yes it is possible:

$$
-\frac{1}{12} \boldsymbol{v}_{1}+\frac{1}{30} \boldsymbol{v}_{2}=\left[\begin{array}{cc}
0 & -1  \tag{8}\\
1 & 0
\end{array}\right]
$$

## Task 2.3

Yes, as per below reasoning.

## Task 2.4

Let

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\boldsymbol{x}_{1}
$$

and

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]=\boldsymbol{x}_{2}
$$

Then:

$$
\begin{align*}
a \boldsymbol{x}_{1}+b \boldsymbol{x}_{2} & =a\left(a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}\right)+b\left(b_{1} \boldsymbol{v}_{1}+b_{2} \boldsymbol{v}_{2}\right)  \tag{9}\\
& =\left(a a_{1}+b b_{1}\right) \boldsymbol{v}_{1}+\left(a a_{2}+b b_{2}\right) \boldsymbol{v}_{2} \tag{10}
\end{align*}
$$

where $a_{1}, a_{2}, b_{1}, b_{2}$ are coefficients determined above. These are orthogonal to each other, so they span $\mathbb{M}_{2}$.

