MAT?292
Tutorial 2 Solution

QiLin Xue
Fall 2021

1. (a) (x,y) = (0,vt)
(b) (z,y) = (0,—b+ut)

Alternatively, we can write y;,,,(t) = u. Integrating and using the initial position gives the same result as
above.

2. (a) It will be a concave up curve, dz/dt > 0.

(b) It will pass the vertical line test.
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(b) Taking e and differentiating, we get
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(¢) See the boxed equations. Equating these, we have
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We can make the substitution w = 3’ = d—y Then the equation becomes
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Separating variables, we get
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We have w = 0 when x = —a, so
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Letting e we get the desired differential equation:
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Bonus: Using an integral calculator, I get
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At x = —a, we have y = 0, so we can solve for the constant of integration. To avoid writing fractions, let
f=v/u.
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where we skipped some steps factoring.



