MAT292
 Tutorial 2 Solution

QiLin Xue

Fall 2021

1. (a) $(x, y)=(0, v t)$
(b) $(x, y)=(0,-b+u t)$

Alternatively, we can write $y_{\text {lion }}^{\prime}(t)=u$. Integrating and using the initial position gives the same result as above.
2. (a) It will be a concave up curve, $d x / d t>0$.
(b) It will pass the vertical line test.
(c) $u=\sqrt{x^{\prime 2}+y^{\prime 2}}$
(d) We have $\frac{d y}{d x}=\frac{v t-y}{0-x}$
3. (a) Using the chain rule, we have

$$
\begin{equation*}
\frac{d}{d t} y(x(t))=\frac{d y}{d x} \frac{d x}{d t} \tag{1}
\end{equation*}
$$

Using this, we have

$$
\begin{equation*}
u^{2}=\left(\frac{d y}{d x} \frac{d x}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2} \tag{2}
\end{equation*}
$$

and isolating for $\frac{d x}{d t}$ gives

$$
\begin{equation*}
\frac{d x}{d t}=\frac{u}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}} \tag{3}
\end{equation*}
$$

(b) Taking $\frac{d y}{d x}=\frac{y-v t}{x}$ and differentiating, we get

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\frac{1}{x}\left(\frac{d y}{d x}-v \frac{d t}{d x}\right)+\frac{v t-y}{x^{2}} \tag{4}\\
& =\frac{1}{x}\left(y^{\prime}-v \frac{d t}{d x}\right)-\frac{y^{\prime}}{x} \tag{5}\\
& =-\frac{v}{x} \frac{d t}{d x} \tag{6}
\end{align*}
$$

which gives

$$
\begin{equation*}
\frac{d x}{d t}=-\frac{\frac{v}{x}}{\frac{d^{2} y}{d x^{2}}} \tag{7}
\end{equation*}
$$

(c) See the boxed equations. Equating these, we have

$$
\begin{equation*}
\frac{u}{\sqrt{1+y^{\prime 2}}}=-\frac{\frac{v}{x}}{\frac{d^{2} y}{d x^{2}}} \tag{8}
\end{equation*}
$$

We can make the substitution $w=y^{\prime}=\frac{d y}{d x}$. Then the equation becomes

$$
\begin{equation*}
\frac{d w}{d x}=\frac{-v}{u x} \sqrt{1+w^{2}} \tag{9}
\end{equation*}
$$

Separating variables, we get

$$
\begin{align*}
\int \frac{1}{\sqrt{1+w^{2}}} \mathrm{~d} w & =-\frac{v}{u} \int \frac{1}{x} \mathrm{~d} x \tag{10}\\
\sinh ^{-1}(w) & =-\frac{v}{u} \ln |x|+C \tag{11}
\end{align*}
$$

We have $w=0$ when $x=-a$, so

$$
\begin{equation*}
C=\frac{v}{u} \ln (a) \tag{12}
\end{equation*}
$$

and so

$$
\begin{equation*}
w=\sinh \left(\frac{v}{u} \ln \left(-\frac{a}{x}\right)\right) \tag{13}
\end{equation*}
$$

Letting $\frac{d y}{d x}$, we get the desired differential equation:

$$
\begin{equation*}
\frac{d y}{d x}=\sinh \left(\frac{v}{u} \ln \left(-\frac{a}{x}\right)\right) \tag{14}
\end{equation*}
$$

Bonus: Using an integral calculator, I get

$$
\begin{equation*}
y=-\frac{u x^{\frac{v}{u}+1}}{2(v+u)(-1)^{\frac{v}{u}} a^{\frac{v}{u}}}-\frac{u(-1)^{\frac{v}{u}} a^{\frac{v}{u}} x^{1-\frac{v}{u}}}{2(v-u)}+C \tag{15}
\end{equation*}
$$

At $x=-a$, we have $y=0$, so we can solve for the constant of integration. To avoid writing fractions, let $f=v / u$.

$$
\begin{align*}
0 & =-\frac{u(-a)^{f+1}}{2(v+u)(-1)^{f} a^{f}}-\frac{u(-1)^{f} a^{f}(-a)^{1-f}}{2(v-u)}+C \tag{16}\\
0 & =-\frac{u(-a)}{2(v+u)}-\frac{u(-a)}{2(v-u)}+C \tag{17}\\
C & =-\frac{u a}{2}\left(\frac{1}{v+u}+\frac{1}{v-u}\right) \tag{18}\\
C & =-\frac{u a}{2}\left(\frac{2 v}{v^{2}-u^{2}}\right) \tag{19}\\
C & =\frac{u v}{u^{2}-v^{2}} a \tag{20}
\end{align*}
$$

This gives

$$
\begin{equation*}
y(x)=\frac{u(-x)}{2(v+u)}\left(-\frac{x}{a}\right)^{v / u}+\frac{u(-x)}{2(v-u)}\left(-\frac{a}{x}\right)^{v / u}+\frac{u v}{u^{2}-v^{2}} a \tag{21}
\end{equation*}
$$

where we skipped some steps factoring.

