MAT292
 Tutorial 4 Solution

QiLin Xue

Fall 2021

1. (a) b, c should have units of $\frac{1}{\text { year }}$
(b) I expect it will diverge, unless both budgets are initially zero.
(c) We have

$$
\left[\begin{array}{l}
x^{\prime} \tag{1}\\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

We verify that the RHS has units of $\frac{\text { dollars }}{\text { year }}$.
(d) The equilibrium is $(0,0)$ and is unstable.
(e) We can compute the eigenvalues

$$
\begin{equation*}
\lambda^{2}=b c \tag{2}
\end{equation*}
$$

so we have $\lambda= \pm \sqrt{b c}$.
(f) We substitute this in to get

$$
\left[\begin{array}{l}
b y \tag{3}\\
c x
\end{array}\right]=\left[\begin{array}{l}
\sqrt{b c} x \\
\sqrt{b c} y
\end{array}\right]
$$

plugging in $x=1$ gives the eigenvector

$$
\left[\begin{array}{c}
1 \tag{4}\\
\sqrt{c / b}
\end{array}\right]
$$

and the second eigenvector is $\left[\begin{array}{c}1 \\ -\sqrt{c / b}\end{array}\right]$.
(g) We have

$$
\left[\begin{array}{l}
x \tag{5}\\
y
\end{array}\right]=A e^{\sqrt{b c} t}\left[\begin{array}{c}
1 \\
\sqrt{c / b}
\end{array}\right]+B e^{-\sqrt{b c} t}\left[\begin{array}{c}
1 \\
-\sqrt{c / b}
\end{array}\right]
$$

2. (a) We have $\sqrt{c / b}=3$. The lines are

Eigenvectors

(b) The phase portrait looks like

Phase Portrait

(c) No.
(d) They will diverge.
3. (a) I understand.
(b) We have

$$
\left[\begin{array}{l}
x^{\prime} \tag{6}\\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
C \\
C
\end{array}\right]
$$

(c) Did via Wolfram Alpha. Equilibrium occurs at $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}C \\ C\end{array}\right]$. We then have

$$
\left[\begin{array}{l}
u^{\prime} \tag{7}\\
v^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

and get

$$
\left[\begin{array}{l}
x \tag{8}\\
y
\end{array}\right]=A e^{-3 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+B e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(d) The solution to the nonhomogenous equation is

$$
\left[\begin{array}{l}
x \tag{9}\\
t
\end{array}\right]=A e^{-3 t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+B e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
C \\
C
\end{array}\right]
$$

(e) False according to Parveer.

