MAT292 Tutorial 4 Solution

QiLin Xue

Fall 2021

- 1. (a) b, c should have units of $\frac{1}{\text{year}}$
 - (b) I expect it will diverge, unless both budgets are initially zero.
 - (c) We have

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 0 & b\\c & 0 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$
(1)

We verify that the RHS has units of $\frac{\text{dollars}}{\text{year}}$.

- (d) The equilibrium is (0,0) and is unstable.
- (e) We can compute the eigenvalues

 $\lambda^2 = bc \tag{2}$

so we have $\lambda = \pm \sqrt{bc}$.

(f) We substitute this in to get

$$\begin{bmatrix} by\\ cx \end{bmatrix} = \begin{bmatrix} \sqrt{bcx}\\ \sqrt{bcy} \end{bmatrix}$$
(3)

plugging in x = 1 gives the eigenvector

$$\begin{bmatrix} 1\\ \sqrt{c/b} \end{bmatrix} \tag{4}$$

and the second eigenvector is $\begin{bmatrix} 1 \\ -\sqrt{c/b} \end{bmatrix}$.

(g) We have

$$\begin{bmatrix} x \\ y \end{bmatrix} = Ae^{\sqrt{bct}} \begin{bmatrix} 1 \\ \sqrt{c/b} \end{bmatrix} + Be^{-\sqrt{bct}} \begin{bmatrix} 1 \\ -\sqrt{c/b} \end{bmatrix}$$
(5)

2. (a) We have $\sqrt{c/b} = 3$. The lines are

(b) The phase portrait looks like

Phase Portrait

$\mathbf{\hat{y}}$	\rightarrow	т - ́		*	»		1	>	-	>	>	1	~	1	7	7	1	1	1	1	1	1	7	1
	\rightarrow	<u> </u>	-	*				~	~	1	>	1	7	1	1	1	1	1	1	1	1	1	1	
	\rightarrow	L_	-	-	»		جسک	~	1	~	7	1	1	*	7	1	1	7	7	1	1	1	1	÷.
		1	-	-			1	~	1	~	~	1	7	1	↗	7	1	7	*	1	7	1	1	1
		+		>			1	~	->	~	- 1-		1	-1	7-	- 1-	-1-	1-	- / -	1	- 1 -	-1	- 1-	-i
		I.		-		->	1	1	1	1	1	1	7	A	1	7	1	7	*	1	1	1	1	
				-		-	1	5	1	· 🛪	1	1	7	1	×	7	1	1	7	7	7	1	1	
	,	1				5	12	<u></u>	ايو آ	<i>_</i> ,	_	í,	7	1	7	1	1	1	1	1	1	-	1	į.
					·	5	1.	-	-	-	-	1	-	7	-	-	1	-	1	4	4	-	4	
	<u> </u>	1 _				<u> </u>	1	4	<u></u>		<u></u> _	Ľ.	4		4		Ľ.,		_1_	-				_1
	, ,			_		~	1	2		1	2	6	1		1	2	12	1	1	1	1		1	1
	\rightarrow			_	-	1	1	1	1	1	1	1	1		1	1		<u> </u>		7	7	7	7	÷
_	, , ,			~		1	1	1	1	~	7	1	7	1	7	7	1	7	1	7	1	1	7	÷
	<u>→ </u>			~	~	~	1	1	1	1	1	7	1	1	1	7	1	1	1	1	1	1	1	
	**		~	~	~	~	7	1	1	1	7	7	7	1	1	1	1	1	1	1	1	1	1	1
	**		~	~	~	~	1	1	1	7	7	7	1	1	1	1	1	1	1	1	1	1	1	
	+ >		~	>	~	7	1	7	1	7	1	1	1	1	1	1	1	1	1	1	1	1	1	ł
		↓ ▼ .	~	~	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	· · ·	-	~	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ł
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	× -	7.	↗	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	٨	٨	٨	٨	4
	× ,	*	1	1	1	1	1	1	1	1	1	*	1	1	٨	٨	1	٨	1	٨	٨	1	٨	1
	_ ~ 7		1	1	1	1	1	1	1	٨	٨	*	٨	1	٨	٨	*	٨	*	٨	٨	*	٨	4
	21	1	1	1	1	٨	1	٨	۲	٨	٨	*	٨	*	٨	٨	•	٨	A	٨	٨	•	٨	ł.
	7	1		1		1	11		1.1					11	1			1	- 1 I	1	1		x	

(c) No.

- (d) They will diverge.
- 3. (a) I understand.
 - (b) We have

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} -2 & 1\\1 & -2 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} C\\C \end{bmatrix}$$
(6)

(c) Did via Wolfram Alpha. Equilibrium occurs at $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} C \\ C \end{bmatrix}.$ We then have

$$\begin{bmatrix} u'\\v'\end{bmatrix} = \begin{bmatrix} -2 & 1\\1 & -2 \end{bmatrix} \begin{bmatrix} u\\v \end{bmatrix}$$
(7)

and get

$$\begin{bmatrix} x \\ y \end{bmatrix} = Ae^{-3t} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + Be^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
(8)

(d) The solution to the nonhomogenous equation is

$$\begin{bmatrix} x \\ t \end{bmatrix} = Ae^{-3t} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + Be^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} C \\ C \end{bmatrix}$$
(9)

(e) False according to Parveer.