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I worked with Ahmad, Jonah, and Nathan on this problem set.

1. (a) No discontinuities - TRUE. By Theorem 1 of the book.

(b) At most 10 discontinuities - TRUE. We will show that if f has more than 10 discontinuities, then there exists an
N ∈ N such that n > N implies that fn has more than 10 discontinuities.

Suppose that f has a discontinuity at x0. This means that there exists an ε > 0, any for any δ > 0, we have
|x− a| < δ implies that

|f(x0)− f(a)| > ε. (0.1)
We now claim that there exists an N ∈ N such that n > N implies that fn also has a discontinuity at x0. We
prove this by contradiction. Suppose that fn is continuous at x0. Then for any ε > 0 there exists δ′ > 0 such that
|x0 − a| < δ =⇒ |fn(x0)− fn(x0)| < ε

10 . Note that if δ′ works then so does

δ′′ = min{δ′, δ}, (0.2)

where δ is picked from the ε before. Due to convergence (we only require point-wise convergence here), we know
that there exists N ∈ N such that n > N implies that

|fn(x0)− f(x0)| < ε

10 , |fn(a)− f(a)| < ε

10 . (0.3)

We can bring everything together using the triangle inequality. Given the ε > 0 from before (when we showed that
f has a discontinuity at x0), we have |x− a| < δ′′ implies that

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| < ε

10 + ε

10 + ε

10 = 3ε
10 < ε. (0.4)

But we showed before that |f(x)−f(a)|, giving us a contradiction. Because every discontinuity in the limit function
corresponds to the same discontinuity in the sequence, we know this is true.

We can choose an Ni for each discontinuity x1, . . . , xk in f, and by the above for N > max{Ni}, we have that fn
has at least k discontinuities. Therefore, if f were to have more than 10 discontinuities, then we can find fn with
more than 10 discontinuities.

(c) At least 10 discontinuities - FALSE. Let [a, b] = [0, 10] and consider the sequence

fn(x) = 1
n
bxc. (0.5)

This has 10 discontinuities, at x = 1, 2, . . . , 10. However, they converge to f(x) = 0, which has no discontinuities.
We just need to show that it is uniform convergence. This is true since for any ε > 0, we can choose N = 100

ε
such

that for n > N, we have:

sup|fn(x)− f(x)| = maxfn(x) (0.6)
< maxfN (x) (0.7)

= 10
N

(0.8)

<
ε

10 < ε. (0.9)

(d) Finitely many discontinuities: False. Let [a, b] = [0, 1]. Consider the function

fn(x) =

x x ∈
{

1
1 ,

1
2 , . . . ,

1
n

}
0 else

(0.10)

1



and define

f(x) =
{
x x ∈ {1, 1/2, 1/3, . . . }
0 else.

(0.11)

Clearly, fn(x) has n discontinuities and the limit function f(x) has a countable (infinite) number of discontinuities.
We now need to show that fn(x) uniformly converges to f(x). We do so by computing the sup-norm,

sup|f(x)− fn(x)| = 1
n
, (0.12)

which approaches 0 as n→∞.

(e) Countably many jump discontinuities: True. In fact, we will prove that there cannot be uncountably many jump
discontinuities. To do so, note that jump discontinuities are isolated points. This is because x0 is a jump discontinuity
if and only if

lim
x→x−

0

f(x) 6= lim
x→x+

0

f(x), (0.13)

but they both exist. But for the one-sided limits to exist, you need to be able to construct an interval (x0 − δ, x0)
and (x0, x0 + δ) where the function is continuous, i.e. the point x0 is isolated from any other discontinuity.

Now consider the set of all jump discontinuities {xα}, which form isolated points. In other words, the distance
between any two discontinuities x, y is nonzero (actually, we need a stronger statement: that for any discontinuity
we can have an open interval around it such that it only contains this. This is true because the continuities are
jump). To prove that this set is countable, consider Q. For each q ∈ Q consider x = min{x ∈ {xα}|x > q}. This
minimum exists since all the points are isolated. Now consider the open set around q,

(q − ε1, x+ ε2), (0.14)

which contains x but doesn’t contain any other discontinuity. This can be done because the discontinuities are
isolated, so there’s some finite distance between any two of them. This creates an injection from {xα} → so {xα}
must be countable. Therefore, there cannot be uncountable many jump discontinuities and the number of jump
discontinuities is countable.

(f) No jump discontinuities: False. Consider the function

fn(x) =

1 x ≤ 0
1
n

sin(1/x) x > 0.
(0.15)

For every fn(x) there is a discontinuity at x = 0, but it is not a jump discontinuity because lim
x→0+

1
n

sin(1/x) does
not exist. However, the function converges to

f(x) =
{

1 x ≤ 0
0 x > 0,

(0.16)

which has a jump discontinuity at x = 0. Finally, we need to verify that this convergence is uniform. Note that the
function doesn’t change for x ≤ 0, so

sup{fn(x)− f(x)} = sup{ 1
n

sin(1/x)− 0} = 1
n
, (0.17)

which approaches 0 as n→∞.

(g) No oscillating discontinuities: True. Suppose that fn(x) has no oscillating discontinuities. That means all discon-
tinuities are jump discontinuities.

We prove the contrapositive. Suppose the limit function f(x) has an oscillating discontinuity at x0. There are two
cases:

• Case 1: x0 is a hole, i.e. it is removable. Specifically, lim
x→x+

0

f(x) = lim
x→x−

0

f(x), but they are not equal to f(x0).

We can apply the same reasoning as in (b) to show that if we have a removable discontinuity in f(x) then for
some N ∈ N, n > N implies that there is a jump discontinuity at fn(x0). I didn’t work out the details fully
here.
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• Case 2: x0 is some other discontinuity: This means that either lim
x→x+

0

f(x) or lim
x→x−

0

is not defined, or both.

WLOG, take lim
x→x+

0

f(x) to be undefined. Then we claim that there exists N ∈ N such that n > N implies that

lim
x→x+

0

fn(x) is undefined. If it was defined, then uniform convergence requires that the points around this limit

approach to f(x) at a rate that can be bounded (i.e. “slowly”). I didn’t have time to work out the rest of the
details here either, but I suspect it is similar to a δ − ε proof as in part (b).
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2. We will prove that it is equicontinuous. We will use the following lemma:

Lemma 1: The sequence gn(x) = sin2(nnx)√
n+ 2

is equicontinuous.

Proof. Let ε > 0. Since gn(x) converges to 0 as n → ∞, there exists N ∈ N such that for all n > N, we have
gn(x) < ε. Namely, pick

N =
⌊

1
ε2
− 2
⌋
. (0.18)

Then,

|gn(x0)− gn(a)| >
∣∣∣∣ 1√
n+ 2

− 0
∣∣∣∣ (0.19)

>
1√
N + 2

(0.20)

> ε. (0.21)

So for n > N, we are done automatically for any δ. Now let us work with the n ≤ N case. Because g(x) is
continuous, for any n ≤ N, there exists a δn that ensures

|s− t| < δn =⇒ |gn(s)− gn(t)| < ε. (0.22)

Therefore, define
δ = min{δi : i = 1, . . . , N}. (0.23)

Clearly, gn(x) converges with the same δ for all n ≤ N. Therefore, we have shown that gn(x) is equicontinuous.

We can add 1 to each element in the sequence gn(x) = sin2(nnx)√
n+ 2

, and we will still get an equicontinuous sequence (i.e.

shift by constant). We can now prove that
log(1 + gn(x)) (0.24)

is equicontinuous in a similar way. For any ε > 0, we pick the same N ∈ N as in the lemma. For n > N we know that

0 < log(1 + gn(x)) < log(1 + ε) < ε (0.25)

so by the same reasoning as before, | log(1 + gn(x0)) < log(1 + gn(a))| < ε for any δ. Then for the n ≤ N case, we use
the same trick of finding the minimum δn and defining δ = min{δi : i = 1, . . . , N}.

Lemma 2: If fn(x) is equicontinuous and gn(x) is equicontinuous, then fn(x) + gn(x) is equicontinuous.

Proof. For any ε/2 > 0, there exists δ′, δ′′ > 0 such that

|x− a| < δ′ =⇒ |fn(x)− fn(a)| < ε/2 (0.26)

and
|x− a| < δ′′ =⇒ |gn(x)− gn(a)| < ε/2. (0.27)

Pick δ = min{δ′, δ′′} such that

|x− a| < δ =⇒ |fn(x) + gn(x)− fn(a)− gn(a)| < |fn(x)− fn(a)|+ |gn(x)− gn(a)| (0.28)
< ε/2 + ε/2 (0.29)
= ε. (0.30)

Also note that cos(n+ x) is equicontinuous. A standard first-year calculus result will show that setting δ = ε is sufficient.
This does not depend on δ so cos(n+ x) is equicontinuous. The sum of two equicontinuous sequences is equicontinuous,
so we can conclude that

cos(n+ x) + log
(

1 + 1√
n+ 2

sin2(nnx)
)

(0.31)

is equicontinuous.

4



3. (a) For every ε > 0, we can pick δ =
( ε
H

)1/α
. Then the set Cα(H) of continuous functions defined on [a, b] with

α-Holder constant ≤ H is equicontinuous because

|s− t| < δ, n ∈ N =⇒ |s− t| <
( ε
H

)1/α
(0.32)

=⇒ H|s− t|α < ε. (0.33)

Because each function fi is α-Holder continuous, we have

|s− t| < Hi|fi(s)− fi(t)|α < H|fi(s)− fi(t)|α, (0.34)

since the Hi for each function is bounded above by H. But we have shown that H|s− t|α < ε, so this δ implies that

|s− t| < δ =⇒ |fi(s)− fi(t)| < ε. (0.35)

(b) The same proof applies.

(c) The same proof applies.
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4. (a) Consider g(x) = sup{f(x) : f ∈ E}. Because E is uniformly continuous, given some ε′ = ε/10, there exists a δ > 0
such that |x0 − a| < δ =⇒ |f(x0)− f(a)| < ε′ = ε/10 for all f ∈ E . Now we will prove that g(x) is continuous.

For any ε > 0, pick the δ > 0 that corresponds to ε′ = ε/10 for the functions in E , as per above. Then we can
show that g(x) is continuous at x0. Because g(x) is the least upper bound, there exist functions h(x), k(x) that are
within ε/10 at x0 and a respectively.

Because h(x), k(x) are equicontinuous, then |x0 − a| < δ implies that |h(x0) − k(a)| < ε/10 which implies that
|h(x0)− h(a)| < ε/10. Similarly, the same thing goes for k(x) so that |h(x0)− h(a)| < ε/10. We get the following
diagram:

Note that if F is above E we will choose k(x) for both graphs and if C is above B then we will chose h(x) for both
graphs. Therefore, we can say that E is not below F and B is not below C.

We wish to compute ε := d(A,D), where the norm is the vertical distance. By the triangle inequality, we have:

d(A,D) < d(A,B) + d(B,F ) + d(F,C) + d(C,E) + d(E,D) < 4ε
10 + d(C,F ), (0.36)

where we set ε′ = ε

10 . We claim that d(C,F ) < ε′. Suppose that C is below F. Then d(C,F ) < d(C,E) < ε/10.
If instead C was above or at the same height as F, then d(C,F ) < d(F,B) < ε/10. Therefore:

d(A,D) < 5ε
10 < ε. (0.37)

Therefore, we showed that |x0 − a| < δ implies that d(A,D) = |g(x0)− g(a)| < ε.
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(b) Consider the sequence

fn(x) =


−xn 0 < x ≤ 1
−(2− x)n 1 < x < 2
0 else.

(0.38)

It is easy to check that this is continuous for all n. It is bounded, and it is not equicontinuous. To prove failure of
equicontinuity of xn in the closed interval [0, 1], pick ε = 1 and pick an arbitrary δ > 0, along with t, s ∈ [0, 1].
WLOG, let t > s such that we can write t = s+ χ, where χ > 0. We can write the inequality:

tn − sn = (s+ χ)n − sn (0.39)
≥ sn + nsn−1χ− sn (0.40)
= nsn−1χ. (0.41)

This shows that for any s, t we pick, we can make the difference tn − sn as big as we want since the difference is
controlled by n.

Now we can compute,

g(x) := sup{fn(x) : n ∈ N} =
{
−1 x = 1
0 else.

(0.42)

This is true since we will always have fn(1) = −1, and fn(x) = 0 for all x ≤ 0 and x ≥ 2. For everything else,
0 will always be the least upper bound since for any ε, there exists N ∈ N such that fN (a) > 0 − ε for some
a ∈ (0, 2) \ {1}. Clearly, g(x) is not continuous at x = 1, so we have found a counterexample.

(c) See part (d)

(d) Consider the sequence
pn(x) = −fn(x), (0.43)

where fn(x) is defined as in part (b). This is not equicontinuous for the same reasons. We just need to show that
the supremum of the sequence is always continuous. First, note that pn(x) is a non-increasing monotonic sequence,
i.e.

p1(x) ≥ p2(x) ≥ · · · ≥ pn(x) (0.44)

so if we pick any subset, and we order it by indices, then let k be the smallest index. By monotonic, we have that
pk(x) is the supremum of the subset and since pk(x) will always be continuous, the spremum-sup property is true
for any subset of {pn(x)}.
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5. (a) We prove it for a general compact metric space. Consider the sequence fn − f. Since it is defined on a compact
metric space and fn − f is continuous, it is bounded, and the maximum exists, i.e.

sup{fn − f} = max{fn − f}. (0.45)

Also note that fn is monotonic, so we have fn − f is monotonic, and it is bounded below by 0. Finally, because fn
approaches f, we know that fn − f approaches 0 pointwise. If we can show that fn − f approaches 0 uniformly,
theen we’re done. We’ve now reduced our problem to something simpler:

Consider monotonically non-increasing sequence gn(x), where gn(x) ≥ 0 is bounded, continuous, and defined on a
compact set M , where gn approaches 0 point-wise. We will show that gn approaches 0 uniformly. To do so, we
will construct an open cover for M. Recall that because gn(x) approaches point-wise to 0, for every xα ∈M there
exists an open ball Bδ(xα) such that for any ε > 0 there exists N ∈ N such that n > N implies that

sup{gn(x) : x ∈ Bδ(xα)} < ε, (0.46)

which follows immediately from continuity of gn(x). That is, for any ε′ = ε/2 > 0, there exists δ > 0 such that
x ∈ Bδ(xα) =⇒ d(gn(x), gn(xα)) < ε

3 . But d(gn(x), 0) < d(gn(x), gn(xα)) + d(gn(xα), 0) < ε

3 + ε

3 < ε, since by
point-wise continuity, gn(xα) can be arbitrarily close to 0.

We do this for every xα ∈M to construct the open cover,⋃
α

Bδα(xα) ⊇M (0.47)

but since M is compact, we can find a finite subcover,
n⋃
i=1

Bδi(xi) ⊇M. (0.48)

Then,

sup {gn(x) : x ∈M} = sup {sup{gi(x) : x ∈ Bδi(xi)} : i = 1, 2, . . . , n} (0.49)
= max {sup{gi(x) : x ∈ Bδi(xi)} : i = 1, 2, . . . , n} , (0.50)

where we were able to use the maximum since there are a finite number of elements. But we have shown that each
term is bounded by some εi for n > N. Therefore, we have

sup {gn(x) : x ∈M} < max{ε1, . . . , εn}. (0.51)

But these εi can be anything, so we let their maximum be ε. Therefore, we have shown that for n > N and ε > 0,
we have

sup {gn(x) : x ∈M} < ε, (0.52)
so it uniformly converges.

(b) The proof works in exactly the same way. But instead of considering fn − f, we now consider f − fn. The same
properties still hold (monotonic non-decreasing sequence, bounded below by 0, bounded, continuous), so we can
still use the same argument.

(c) Consider the counter-example:

fn(x) = |x|
n
. (0.53)

This is a monotonic sequence that converges to 0, but it doesn’t converge monotonically. For any ε > 0 and any
N ∈ N we can find x and n > N such that f(x) > ε, namely n = 2N and x = 4εN which gives

f2N (x) = 4εN
2N > ε. (0.54)

(d) We have already proved it for compact metric spaces in part (a). For general Rm, it doesn’t work for the same
reason it doesn’t work in part (c). In fact, I can define

fn(x1, . . . , xn) = |x1|
n

(0.55)

and the proof why this doesn’t converge uniformly to 0 is exactly the same as before.
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