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This experiment analyzed the effects of air resistance on a home-made pendulum. By attempting
to apply a linear model of air resistance Fd = −bv, a quality factor of Q = 310± 10 was obtained.
It turns out that the factor b(v) ∝ v is dependent on velocity and thus the quality factor is different
at different points. Applying a quadratic model of air resistance gives a more accurate fit.

I. INTRODUCTION

Pendulums have been used since the 17th century to
keep track of time.[1] Their design is extremely simple:
they generally consist of a small but heavy mass con-
nected at the end of a long freely rotating rod. One
useful characteristic is that for small angles, the period
of motion is not affected by the amplitude allowing them
to keep track of time even as their amplitudes decrease
due to energy dissipation effects such as air resistance.
Despite this, dissipative effects are not desired as even-
tually, one can no longer make out the motion of the
pendulum, making it useless.

As a result, it is extremely important to analyze how
the amplitude decreases due to air resistance, the major
contributing effect. Assuming a linear drag of Fd = −bv
and approximating the pendulum as a point mass, the
net torque gives:

m`2θ̈ = −mg` sin θ − b`2θ̇ (1)

where v = `θ̇ is used to write the torque caused by air
resistance. Using the small angle approximation sin θ ≈
θ, we get a second order linear differential equation:
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There are a variety of factors affecting the behaviour of
this system, and to solve it for the most general case we
can nondimensionalize this equation with the substitu-
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that represents the number of periods. Substituting this
in, we get:
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which can be simplified to:
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This can be written in the form of
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where we have defined a new dimensionless number

known as the quality factor and given byQ ≡ b
m

√
`
g . The

solution to this equation is well known (see Appendix A)
and is given by:

θ = θ0e
−πQT cos (2πT + φ) (6)

where θ0 is the initial angle, φ is the phase shift, and all
quantities are dimensionless numbers. The first factor
θ0e

−πQT is known as the envelope function and qualita-
tively it describes how the amplitude changes with time.
If the amplitude is to change by a factor of e−π/N , then
we have:

θ0e
−π/N = θ0e

−πQT =⇒ T =
Q

N
(7)

If N = 2, then by counting how many periods it takes for
the amplitude to change by a factor of e−π/2 ≈ 21% gives
the quantity Q/2. Alternatively, by numerically fitting
experimental data with the the model also allows Q to
be extracted.

II. METHOD

A 163.5 ± 0.1cm light string with mass smaller than
< 0.5g was used to hang a 359± 0.5kg water bottle from
a nail drilled into a wall. Figure 1 shows the shape and
dimensions of the almost completely filled water bottle,
measured with a metre stick. A High Definition 1080p
60fps GoPro Hero 4 Silver camera was used, set to “linear
mode.”, and placed a distance 109± 1cm away from the
equilibrium position of the pendulum, which in turn was
32.5±0.2cm away from the back wall. Another string was
hung and offset to the side to act as a reference marker to
ensure the pendulum was swinging in the plane parallel to
the wall. I slowly provided the pendulum a small angular
displacement using this string as a reference, released it
from rest, and let it run until the swinging was barely
noticeable. The setup is shown in figure 2. The position
of the pendulum in each frame was obtained using the
AutoTracker feature of the Tracker software[2], a free
online tool that can estimate the location of a marker
via kinematic data and pixel comparison. A meter stick
was taped in the background to calibrate the distances in
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FIG. 1. Dimensions of the water bottle used. It can be ap-
proximated as a rectangular prism attached to a trapezoidal
pyramid and a cylinder. Note that due to the camera angle,
the lengths drawn in the picture are not to scale.

FIG. 2. A water bottle is tied to a light string hung above
(out of frame). A ruler is taped to the wall, and green tape
runs directly behind the string to make it easier for the GoPro
to be lined up. A second string with tape on its end hangs
towards the side.

the software. The collected raw data was then processed
through my own customized Python script (see Appendix
B) to account for visual effects and calculate the quality
factor Q in numerous ways.

III. RESULTS

The experiment ran for just over ten minutes and
120, 057 frames were analyzed using the software Tracker.
There were hundreds of oscillations and it would not be

meaningful to plot everything in one figure. Instead,
different intervals are plotted in figure 3. If the ampli-

FIG. 3. A few selected data points. The red lines represent
the error bars. The top figure shows the evolution near the
start, the middle figure shows the time interval in the middle,
and the bottom figure shows the time interval at the end. In
general, relative uncertainties become more noticeable as time
progresses.

tudes follow the predicted envelope function, then plot-
ting their natural logarithms should yield a straight line:

ln(θ) = ln(θ0)− t

τ
(8)

where the negative inverse of the slope gives the time
constant τ . However when plotted in figure 4, it does
not appear to have a linear relationship. If we were to
use this plot, the time constant is given as τ = 302± 4s
and the initial angle is θ0 = 0.260 ± 0.003. Note that
this is the fitted value and the actual initial amplitude
was measured to be θ0,actual = 0.357± 0.007. This large
dispecrancy is the first hint at how this exponential model
may not be the best out there.

Using this as the enveloping function, we can determine
a fit for the sinusoidal part to get T = 2.593 ± 0.004s.
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FIG. 4. A plot of the natural log of the amplitudes with
the line of best fit. The desired linear pattern was not seen.
The quality of the fit is given by R2 = 0.94. The red dots
denote the amplitudes which fall within 21±0.5% of the initial
amplitude. Note that only the first 500 seconds have been
graphed, as external effects such as rotation heavily dominate
afterwards.

This gives the first Q value of Q = 366 ± 5. Using the
second method of counting the number of oscillations, I
get Q = 270 ± 30 by considering the first and last data
point that is within 0.5% to 21% and finding the average.
Performing a weighted average, I get

Qest = 310± 10 (9)

using Python, since we are not supposed to use proper
error propagation techniques yet. In general, a high Q
factor is preferred, since the deviation in the amplitude
over a given period is smaller. In future experiments,
I will investigate how the initial angle may impact the
period of oscillation, and being able to maintain near a
certain amplitude will make period measurements more
accurate.

The dispecrancy between these two Q values can come
from a combination of faulty experimental design and an
incorrect model. Both these options will be looked at
thoroughly.

IV. DISCUSSION

A. Uncertainties

All uncertainty analysis was done using the Python
uncertainties package[3]. The time uncertainty for each
measurement is determined by the frame rate, which al-
though was filmed in 60fps, but was processed in 30fps
for practical purposes. The primary purpose of the high
frame rate was to increase the clarity of each frame. Nev-
ertheless, the time uncertainty of half a frame ∆t ≈ 0.02s
ends up being negligible when we divide by the total

number of swings, which is approximately 262± 2 to get
∆t
262 ≈ 6× 10−5.

The Tracker software was able to track the location
of the cap at all times. Sometimes it would track the
left side of the cap while other times it would track the
right side. I estimate the relative uncertainty for each
measurement to be around ∆x ≈ 1.4cm, which is the
radius of the cap. Python was then able to propagate
this error to calculate the uncertainty in the angle, which
has a typical value of ∆θ ≈ 0.007 ≈ 0.4◦. While this
is not a big problem early on, the relative error slowly
becomes larger and the maximum relative error becomes
0.12, which is around three orders of magnitude larger
than the time uncertainty in the frames. Since the period
is independent of the amplitude, this will not affect the
period, but will affect the time constant.

The effective distance to the center of mass also has
some uncertainty. We can perform a naive estimation of
the center of mass as:

(11.1+2.5)−1

2

(
(11.1cm + 2.5cm) + (2.5cm)

2

)
≈ 7±1cm

(10)
from the cap, which is the point of attachment of the
string. This comes from a simple max/min calculation
assuming the trapezoidal pyramid was absent (for the
max calculation), and assuming the trapezoidal pyramid
was a rectangular prism (for the min calculation). This
leads to an uncertainty in the period of ∆T = 0.008s
which is around two orders of magnitude larger than the
uncertainty caused by the time. Since Q is proportional
to the period, the relative uncertainty in the Q factor will
be very similar.

B. Experimental Design

There are two main flaws in the experimental design.
First, the setup is extremely sensitive to small perturba-
tions. The rope can easily rotate and for the majority of
the time, the bottle was constantly rotating. The impli-
cations of this are not clear and the degree in which this
affects the experiment needs more investigation. This
additional degree of freedom could possibly lead to cou-
pling effects. These effects are beyond the scope of this
investigation, but I have sufficient reason to believe they
play an effect.

Towards the end of the experiment, the average period
for the rotation is Trot ≈ 2.685 ± 0.005s, which is rea-
sonably close to the period of the swinging motion. This
number was determined manually by averaging over ten
rotations, and the uncertainty was experimentally deter-
mined by trying to stop a stopwatch at exactly the one
second mark and averaging my attempts, for an uncer-
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tainty of ±0.05s. Visually, the swinging of the pendulum
was almost synchronized with the rotation around its own
axis that it is hard to believe it is a coincidence. The de-
gree at which these two modes affect each other is yet to
be determined, but it is desirable if no rotation occurs at
all next time. A possible solution could be to attach two
or more strings to the load, which will make it harder for
the bottle to rotate.

Second, the program Plotter occasionally has a very
difficult time to identify the blue cap and provides false
readings. A few can be seen in figure 4, where visually
they seem out of place. If the experiment is to be done at
smaller angles, then the precision in the plotting software
needs to increase. This can be achieved by attaching
a small LED light to the pendulum and operating the
pendulum in the dark, making it much easier for the
software to track.

C. Linear or Quadratic Drag

While the experimental design could be improved to
reduce uncertainties, the enveloping nature of the pendu-
lum is clearly non-linear when the natural logarithm of
the amplitudes were plotted. This gives sufficient reason
to believe that the drag may not be linear with respect to
velocity, but instead quadratic, given by the drag equa-
tion:

Fd = −1

2
cdρA|v|v = −β|v|v (11)

where ρ is the density of air, A is the cross sectional area
and cd is the drag coefficient, which we have all clumped
together in β. Unfortunately, the differential equation for
quadratic drag does not have a nice closed form. How-
ever, by assuming that the change in amplitude is small
over a small time interval, we can approximate the en-
veloping function as[4]:

θ =
θ0

1 + αT
(12)

where:

α ≡ 4βωθ0

3π
(13)

The value of α can be determined by plotting 1
θ as a

function of t:

1

θ
=

1

θ0
+
α

θ0
t (14)

and the value of θ0 and α can be read off of the y
intercept and slope to get α = 0.0102 ± 0.00023 and
θ0 = 0.368 ± 0.008. Qualitatively, as seen in figure 5,
the data conforms to a quadratic model of air resistance

FIG. 5. A plot of the 1/θ with the line of best fit. A clear
linear pattern can be seen. The quality of the fit is given by
R2 = 0.98.

FIG. 6. Plots of the residuals (shown in black) of the best fit
for the first 100s, using both a linear model of air resistance
(above) and a quadratic model (below). The quadratic model
has smaller residuals and more random noise than the linear
model. The original data (shown in blue) is displayed for
comparison.

much better than a linear model. We can take a look at
how good the fit is by comparing the residuals as seen
in figure 6. Because both the amplitude and the period
line up in the quadratic fit, the residuals ar generally
much smaller and more random than the oscillating na-
ture of the residual when assuming a linear model of air
resistance. Because the decaying exponential model was
shown to be not valid, there is no one single Q value, but
instead an entire range. Any small interval can be ap-
proximated as an exponential, but it is not a very useful
model to apply to the entire system. This explains the
large uncertainty in the quality factor Q.
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In general, using an air resistive force of Fd = −bv be-
comes more and more accurate as the magnitude of the
true air resistance |Fd| = 1

2cdρAv
2 decreases. This is be-

cause α is proportional to β and the binomial expansion:

e−αT ≈ 1

1 + αT
≈ 1− αT (15)

become more and more accurate as α decreases. If I am
to replicate the given model as best as I can, it is prefer-
able if I reduce the cross sectional area of the pendulum.
Instead of using a water bottle, I should use a hook con-
nected to small but heavy removable weights. Not only
will this decrease effects of air resistance, but it will also
reduce uncertainty in the location of the center of mass.

V. CONCLUSION

The purpose of the lab was to determine the quality
factor that determines how quickly the amplitude de-
creases due to air resistance by applying a linear model

of air resistance −bv. This model turned out to be not
very accurate, and lead to a quality factor of:

Q = 310± 10

which was obtained by measuring the Q factor in two dif-
ferent ways: first by numerically finding a fit and second
by counting the number of oscillations it took to decrease
the amplitude to e−pi/2 ≈ 21% of the original.

The largest measurement uncertainty comes from de-
termining the location of the bottle in the Tracker soft-
ware, and the second largest measurement uncertainty
comes from the uncertainty in the center of mass. Flaws
in the experimental design also lead to a possibly cou-
pled rotational mode that may affect the motion of the
pendulum. Furthermore, the largest cross sectional area
of the water bottle can lead to a large drag force, which
makes the linear model of air resistance inaccurate.

In the future, to prevent the unwanted behaviour de-
scribed above and to reduce uncertainties, two strings
will be used to attach small but heavy removable ad-
justable weights. An LED light will be attached to the
pendulum to make tracking easier.
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Appendix A: Solution to Linear Drag

To solve the differential equation:

θ̈ + 2πQθ̇ + 4π2θ = 0 (A1)

where derivatives are taken with respect to the dimensionless factor T , we can guess a general solution in the form of
AeαT to get:

α2AeαT + 2πQαAeαT + 4π2AeαT = 0 =⇒ α2 + 2πQα+ 4π2 = 0 (A2)

This gives a quadratic in α where the solution is:

α =
−2πQ±

√
4π2Q2 − 16π2

2
= −πQ± π

√
Q2 − 4 = −πQ

1±

√
1−

(
2

Q

)2
 (A3)

Since we have a linear equation, the solution will consist of a linear combination:

θ(t) = Aeα1t +Beα2t = e−πQT
(
Ae
√

1−(2/Q)2 +Be
√

1−(2/Q)2
)

(A4)

If we define iΩ =

√
1−

(
2
Q

)2

, then we can write the general solution as:

θ(t) = Ce−πQT cos (ΩT + φ) (A5)

as desired, where the identity:

Ae−iΩT +BeiΩT = C cos (ΩT + φ) (A6)

was used.

Appendix B: Python Script and Data

For script was written in Python through a Jupyter notebook, which is available to be viewed here. It consists brief
descriptions of the code, as well as descriptions of how optical corrections were done. Automatic error propagation is
included.

For practical reasons, I cannot include the 120, 000 data points in this report, but they are made available here.
It consists of three columns: time, x-position, and y-position. The origin is set to the equilibrium position of the
pendulum.

https://github.com/QiLinXue/pendulum-labs/blob/main/Data%20Analysis.ipynb
https://github.com/QiLinXue/pendulum-labs/blob/main/data.txt
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