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This experiment analyzed the effects of large amplitudes on the period of a home-made pendulum.
The data for the period was obtained by releasing the pendulum at an angle near 90◦ and measuring
how the period changes as the pendulum decays. Both a quadratic and quartic fit was applied. Both
agreed with theory, with the quartic fit giving coefficients of β = 0.064±0.007 and ζ = 0.0029±0.0008
for the coefficients of the second order and fourth order amplitude correction terms. The motion
was extremely symmetric, and provides a good reference point for future experiments where mass
and length dependance will be tested.

I. INTRODUCTION AND MODIFICATIONS

The previous experiment was able to calculate the Q
factor of a homemade pendulum, which measures how
slowly the amplitude decays over time. That experiment
is only valid for small angles, as it made the assumption
that the period stays constant. In reality, the period is
dependant on the amplitude θ0 via the relationship:[1]
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where ` is the distance from the center of mass of the pen-
dulum to the pivot. Using a similar experimental setup
as last time, I will analyze how well this model describes
the behaviour of the pendulum. Several suggestions were
made from the previous report, and the following were
able to be implemented:

• The pendulum is attached to the pivot using two
strings, one on each side of the pendulum, to pre-
vent the rope from twisting which may create un-
wanted coupling effects.

• The GoPro video setting was increased to 100 FPS,
in order to decrease blur allowing AutoTracker to
accurately track the motion of the pendulum.

To account for environmental constraints preventing the
pendulum to go to 90◦, the rope length was decreased
from 163.5 ± 0.1cm to 107.5 ± 0.1cm. Using 7 ± 1cm
(derived in the previous report) as an estimate of the
center of mass of the pendulum with respect to the string,
then the change in the distance to the center of mass is
around:

f ≡ `cm,new

`cm,before
=

115± 1cm

165± 1cm
≈ 0.70± 0.01 (2)

where the uncertainty is obtained adding in quadrature.
The Q factor is proportional to Q ∝

√
`, so the new Q

factor should be around:

Qnew = Qbefore

√
f = 259± 8 (3)

One suggestion that was not implemented was the rec-
ommendation of using a more dense object than a filled
water bottle, to reduce effects from air resistance. This
suggestion was ultimately rejected for a practical reason:
I wish to examine the effects of mass on the motion of the
pendulum later on, and I wish to do so without affect-
ing the cross sectional area of the pendulum. Variable
scientific weights cannot accomplish that.

II. METHOD

The setup of the pendulum was exactly the same as the
previous experiment, except the initial angle was near
90◦, and was left to swing until it was nearly stopped.
The camera was set very far away in order to capture
the entire motion of the pendulum. Because of this, no
optical corrections were found to be necessary.

As the amplitude decreases, it is predicted that the
period would decrease as well. To reduce time uncer-
tainties and statistical fluctuations, half-period measure-
ments were made by measuring the time over a small
intervals of amplitudes each with a range of ∆θ = 0.2.
By finding the average of these half-amplitude measure-
ments, I can get an estimate for the period at the mid-
point (e.g. the average amplitude in each interval).

Even though this increases the uncertainty in the am-
plitude, the motivation is that for any small variation in
the amplitude, the period can be approximated as linear
with respect to amplitude such that a higher period from
a higher amplitude would balance out the lower period
from a lower amplitude, to arrive at a fairly accurate and
precise average. In other words, if we sum up all period
measurements that fall inside the interval [θ, θ+ 0.2], the
average period gives the period at the midpoint. As with
last time, all calculations along with error propagation
was done in a Python notebook, attached in Appendix
B.
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III. RESULTS

A. Q Factor

The Q factor was remeasured to be Q = 247 ± 2, fol-
lowing the same steps as before which loosely agrees with
the theoretical predicted value of Q = 259 ± 8. This is
expected, since I have not drastically changed the setup.
However, the air resistance was mostly linear in this ex-
periment, as the natural logarithm of the angle gives a
very nice linear fit when plotted with the time elapsed,
as seen in figure 1. I measured this value using the same

FIG. 1. A plot of the natural log of the amplitudes with the
line of best fit (where weights are set to the inverse of the
standard deviation). The desired linear pattern was not seen.
The quality of the fit is given by R2 = 0.99. The red dots
denote the amplitudes which fall within 21±0.5% of the initial
amplitude.

steps as the previous experiment. Since my initial angle
had a magnitude of θ0 = 1.42± 0.03, which is considered
a fairly large angle, I needed to ensure I was measuring
the same value as last experiment. Thus, only the data
after the pendulum has reached an amplitude of around
θ0 ≈ 0.357± 0.007 was used.

B. Period

In general, the data agrees very well with the model.
Using the quadratic fit shown in figure 2, my data sug-
gests a relationship of:

T = T0

(
1 + αθ0 + βθ2

0

)
(4)

with:

T0 = 2.140± 0.005s (5)

α = −0.001± 0.002 (6)

β = 0.0670± 0.0007 (7)

which is reasonably close to the predicted values of:

T0 = 2.151± 0.009s (8)

α = 0 (9)

β = 0.0625 (10)

Since the uncertainty of α is larger than the nominal
value, we claim that the setup is mostly symmetric and
that fluctuations in α could be easily caused by statis-
tical uncertainties. As a result, we can perform a linear

FIG. 2. A plot of the period as a function of the amplitude.
Note that the amplitude ranges from negative (to the left of
the pivot) and positive (to the right), in order to test for
asymmetry.

regression by plotting the period against the square of
the amplitude, as shown in figure 3. Using this linear re-
gression, we verify that the period is T0 = 2.140± 0.005
and β = 0.0670± 0.0007, as shown by considering a full
quadratic fit. This confirms that the pendulum is ex-
hibiting a very symmetric motion.

FIG. 3. A plot of the period as a function of the square of
the amplitude. Similar value for T0 and β was obtained. The
quality of the fit is given by R2 = 0.99.

IV. DISCUSSION

A. Uncertainty of Amplitude Intervals

Demanding that the amplitude intervals have a range
of ∆θ = 0.2 is quite accurate, even for large angles. If we
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assume the model is valid, then I am essentially finding
the average period from θ1 to θ1 + ∆θ, or:

Tavg =
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via experimental sampling. For the measured value of T0

and using θ1 = −π2 , I get that the average period should
be around Tavg = 2.430± 0.007s. I then let this average
be equal to the linear approximation, which on the other
hand would yield the period at the midpoint:
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giving Tavg,approx = 2.390± 0.007s. Here, the relative er-
ror reaches a maximum of 1.6% at π/2. This is reasonable
since the relative error using a quadratic approximation
versus a quartic approximation gives a relative error of
1.9%, which has the same size.

B. Impact of Q Factor

Qualitatively, the Q factor describes how slowly the
system decays, so the higher the Q factor, the more data
points there are in each interval, which decreases the time
uncertainty of each measurement.

A Q factor of 247± 2 is sufficiently high such that for
angles less than 70◦, each interval has at least four data
points, and for even smaller angles such as 35◦, there
were at least eight 10 data points.

Unfortunately, the decay at the very start was ex-
tremely rapid and only one measurement was able to be
made for the initial angle. However, due to the high
frame rate used, the uncertainty was still only 1%. It
might be tempting to try to apply the Q factor to the
start of the motion, but it is only valid for small angles.
At large angles, the effective Q factor becomes smaller,
and can drop by a factor of four.

C. Uncertainties

Overall, this experiment was conducted extremely well,
with physical parameters such as the period agreeing
with the predicted value. With the changes mentioned
in the Introduction, several uncertainties were reduced:

• Coupling Effects: There is no more rotation, so this
effect has been eliminated completely.

• Tracker : By nearly doubling the frame rate, and
having a bottle that does not rotate, Tracker had
less error identifying where the pendulum was. I
estimate this error to be one third the dimensions
of the cap, which corresponds (as calculated in
Python) to an average angular uncertainty of 0.3◦

degrees.

The length uncertainty remains the same and is now the
biggest source of uncertainty when determining the phys-
ical parameters such as the period. In the next lab, I
would like to measure the center of mass of the bottle to
a greater degree of accuracy, which will especially be im-
portant as water is removed or added from inside since
that could affect the location of the center of mass. I
will need to quantify for the change in the location of the
center of mass as the mass of the pendulum is varied.

Finally, there are tiny fluctuations in the period as a
function of amplitude. While part of the reason is due to
an inaccurate model (see the below section), there were
certain flaws in the experimental setup. Due to human
error, I could not align and orient the bottle perfectly
in line with its trajectory, causing some rotation at the
start. Although there were two strings that quickly en-
sured the rotation stopped, the motion was still a bit
chaotic at the start. In future labs, I should start the pen-
dulum above my intended initial angle to let the chaotic
effects settle down and create accurate markings to en-
sure I am releasing the pendulum from the right spot.

D. Small Angle Approximation Validity

In this section, we will check if the quadratic approxi-
mation
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is valid, and at which angles the simple harmonic oscil-
lator (SHO) formula can be used:

T = 2π
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We can achieve this by attempting a quartic fit, as shown
in figure 4. A quartic fit gives the fit of:

T = T0
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and parameters:

T0 = 2.14± 0.01 (16)

α = 0.002± 0.004 (17)

β = 0.064± 0.007 (18)

γ = −0.006± 0.003 (19)

ζ = 0.0029± 0.0008 (20)

As predicted, the coefficients of the odd powers α and γ
are close to zero, with their uncertainties being approx-
imately the same as their nominal values. Meanwhile,
the value of β has improved to 0.064± 0.007, which has
a relative error of less than 3%! This is an improvement
from the 7% relative error when β = 0.0670 ± 0.0007
was used. Additionally, the value of ζ has a relative
error of 19% with respect to the theoretical value of
ζtheory = 11

3072 ≈ 0.0036. While this may seem like a

FIG. 4. A plot of the period as a function of the amplitude,
when fitted to a quartic function.

large error, the theoretical value is actually within the
statistical margins for ζ. The likely values for ζ take on
from ζ ∈ [0.0021, 0.0037], and ζtheory is contained in this
range. I predict that if more accurate data was collected,
especially at higher angles, then the nominal value of ζ
will get closer to the predicted value and the uncertain-
ties would decrease.

Since the coefficients become closer to their predicted
value, this further supports that the model presented in
equation 1 is valid, which we can use to determine when

we can use a quadratic model instead of a quartic model.
We can do this by demanding the relative error in the
period to be less than the time uncertainty divided by
the period ∆t

T = 0.0023s, or:

11
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4
≤ 0.0023 (21)

which gives the maximum angle to be θmax,quadratic =
0.911 or 52.2◦. Meanwhile, the maximum angle in which
we can use the SHO formula instead of the quadratic
approximation is given by when their relative error is
under the time uncertainty as well:

1
16θ

2

1 + 1
16θ

2
≤ 0.0023 (22)

which corresponds to an angle of θmax,SHO = 0.194 or
11.1◦. The relative error was chosen to be ∆T/T in an
attempt to be as objective as possible. These angles rep-
resent the maximum angle at which the current appa-
ratus can no longer detect a difference between the two
models. Depending on the degree of precision needed, we
may be happy with a relative error of 1%, in which case
the angles at which a quadratic and SHO approximation
can apply are θmax,quadratic = 76.2 and θmax,SHO = 28.0◦,
respectively.

V. CONCLUSION

The purpose of the lab was to verify if the homemade
pendulum built in the previous experiment follows the
model presented in equation 1. The model turned out to
be extremely accurate, and the parameters determined
from the quartic fit agrees with the theoretical values.

A few changes were made between this experiment
and the previous one to remove external effects and al-
low measurements to be made more precisely. However,
there are still a few flaws in the experimental design. In
future experiments, I would like to accurately measure
the center of mass of the bottle, and develop a system to
minimize the initial perturbations.
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Appendix A: Python Script and Data

For script was written in Python through a Jupyter notebook, which is available to be viewed here. It consists brief
descriptions of the code, as well as descriptions of how optical corrections were done. Automatic error propagation is
included.

For practical reasons, I cannot include the 140, 000 data points in this report, but they are made available here.
It consists of three columns: time, x-position, and y-position. The origin is set to the equilibrium position of the
pendulum.

https://github.com/QiLinXue/pendulum-labs/blob/main/lab2/Data%20Analysis.ipynb
https://github.com/QiLinXue/pendulum-labs/blob/main/lab2/data.txt
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