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This experiment analyzed the effects of changing the length and mass on the period of a home-
made pendulum. The data for the period was obtained by releasing the pendulum from a small
angle and slowly changing its length by connecting it to a pulley system. The mass dependance was
measured by manually timing the pendulum with a stopwatch and changing the mass by manually
pouring out water. In general, both agreed with theory, providing the correct coefficients. However,
more work needs to be done to measure and quantify other effects such as a changing center of mass,
a nonzero moment of inertia, and air resistance for complete model validation.

I. INTRODUCTION

Previous experiments have established methods to an-
alyze the motion of a pendulum using a motion tracker
and applying computational techniques. These methods
were applied to determine the quality factor Q of a home-
made pendulum, as well as verifying the amplitude de-
pendance on the period. To complete the validation, I
aim to determine how mass and length affects the period
and compare it with the theoretical predictions.

While in previous experiments, I have modeled the wa-
ter bottle to be a point mass, which is valid within ex-
perimental error, this may not be as accurate when the
string length decreases. For a compound pendulum, the
period is given by:

T = 2π

√
I

mg`cm
(1)

If the moment of inertia of the water bottle around the
center of mass is Icm = βmd2 where d is the length of
the water bottle, then by the parallel axis theorem, the
period can be written as:

T = 2π

√
βd2 + `2cm
g`cm

(2)

A nicer form to work with would be the lowest order
approximation

T = 2π

√
`cm
g

(
1 +

βd2

2`2cm

)
(3)

Since mass does not appear in this equation, I would not
expect the period to be affected by increasing the mass
if all other quantities are the same. Since the mass is
changed by removing or adding water from the bottle,
the center of mass is able to change. I can approximate
the bottle as a rectangular prism with a height of 13.2±
0.1cm and a base consisted of a square with side lengths
5.0±0.1cm such that the total volume is around 330mm.
An empty bottle weighs 29±0.5g and assuming the mass

distribution is constant, the center of mass of the bottle
when the water is at a height h is given by:

dcm =

(
ρ(5.0)2h

)
h
2 + 29

(
13.2
2

)
29 + (ρ(5.0)2h)

(4)

which reaches a maximum of dcm,max = 6.6cm and a
minimum of dcm,min = 2.9cm such that the effective un-
certainty of the center of mass can be seen as δ`cm =
6.6 − 2.9 = 0.037m. The relative uncertainty in the pe-
riod is given by:

δT

T
≈ δ`cm

2`cm
=⇒ δT =

δ`

2
√
g`cm

(5)

If approximately a two meter long string is used, then
the uncertainty in the period is:

δT ≈ 0.004s (6)

My reaction speed to a predictable visual event is 0.04±
0.02s, which was obtained by attempting to stop the stop-
watch on the iPhone “clock app” every time the second
hand crosses the five second mark. If ten oscillations are
used to determine the period, then the uncertainty in the
period measurement will be on the same order of magni-
tude as δT . Therefore, even though the center of mass of
the pendulum will be changing, it is very likely no trend
will be seen.

II. METHOD AND MODIFICATIONS

To reduce potential sources of error, the Tracker pro-
gram was used again for the first part of this experiment..
In order to make it easier to change length, the pendulum
was attached to a pulley system as shown in figure 1. As
the bottle swings, the other end of the pulley was pulled
down such that the length changes roughly adiabatically
(slowly, no external torques are applied). A GoPro cam-
era was used to record at 120 fps, such that the time
uncertainty for a single oscillation is δt = 0.004s, which
is equal to the uncertainty if I had manually timed it for
ten oscillations. As a result, by slowly and continuously



2

changing the length, I was able to get period measure-
ments for 200 different lengths to a good precision. These
measurements were then grouped together into 40 data
points by taking the average of consecutive five trials.
Unfortunately, there was no easy way to change the mass

FIG. 1. The modified pendulum setup. Another mass is tied
to the right end, which allowed it to easily change the length
of the swinging pendulum (left). A ruler is taped in the back-
ground for calibration purposes.

so the oscillations were recorded manually. The mass of
the pendulum was changed by dumping out small por-
tions of the water after each trial, then using the pulley
system to lower the pendulum onto a scale to take the
mass measurement while making sure the tension in the
string is zero. A mark was made on the string to ensure
that the length of the string does not change between
trials.

All trials for both parts were run with an initial angle
less than 11.1◦, which was determined to be the thresh-
old at which the amplitude dependance of the period be-
comes unimportant.

III. RESULTS

A. Length Dependance

I will linearize the data in two different ways: first by
plotting the square of the period T 2 against the length of
the string ` as seen in figure 2. This is done in order to
determine relevant coefficients and determine the center
of mass. Then I will plot log(`cm + ∆L) against log(T )
to determine that the relationship is a square root model,
which is shown in figure 4. For the linearization, the slope

FIG. 2. Above: A plot of the square of the period against
the length of the string. Below: A plot of only the period
against the length of the rope. Note that the fitted curve
overestimates the period for short string lengths.

m and intercept b are given by:

m = 4.16± 0.02s2 m−1 (7)

b = 0.05± 0.02s2 (8)

However, since the formula T = 2π
√

`cm
g is not accurate

when the string length is comparable in size to the length
of the water bottle, the two curves plotted in figure 2 are
not representative of the true curve. Instead, it may be
better to only plot the half of the data which use a larger
string length, as shown in figure 3 This linearization has
a slope and intercept of:

m = 3.97± 0.03s2 m−1 (9)

b = 0.31± 0.04s2 (10)
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FIG. 3. A plot of the period against the length of the string,
both linearized (above) and the original (below). Only half
the data points were graphed this time to keep the string
length high.

By only looking at trials where a long string was used,
the data agrees with the theoretical prediction:

T 2 =
4π2

g
(`+ ∆L) (11)

where the theoretical slope is

mtheory =
4π2

9.8± 0.05
= 4.03± 0.02s2 m−1. (12)

This means that the distance from the end of the string
to the center of mass is:

∆` = 0.08± 0.01m (13)

We can use this information to make sense of the original
value for the slope if we were to look at all data. From
equation 2, we have:

T 2 =
4π2

g
`

(
1 +

βd2

`2

)
(14)

Here, the slope would be dependent on `, but since the
additional factor is greater than one, the slope would al-

ways be greater than 4π2

g , which explains a higher over-

all slope when the entire data is fitted. We can pro-
vide a lower bound for β by considering the minimum
length ` = 0.25m. Since the length of the bottle is
d = 0.145± 0.001m, we have:

β =
0.252

d2
· 4.16± 0.02(

4π2

g

) − 1 = 0.09± 0.02 (15)

This is roughly on the order of magnitude of β for a
uniform cylinder, which is β = 1

12 , so the model for small
lengths can be considered relatively reasonable. To verify
that the power law is n = 1

2 , we can plot the logarithm
of the length to the center of mass log(`cm) with respect
to the logarithm of the period log(T ). Therefore, if the
relationship between the two were T = (C`cm)n, then
the log-log plot would yield

log(T ) = n (log(`cm) + log(C)) (16)

giving n as the slope and n log(C) as the y-intercept. This
is shown in figure 4. The slope m and the y-intercept b

FIG. 4. A log log plot of the period vs the distance to the cen-
ter of mass, which was calculated from the previous analysis.
Note that only half of the data with large values for length
were plotted, in order to ensure that other effects were not
important.

are:

m = 0.501± 0.004 (17)

b = 0.2989± 0.0009 (18)

Here, all units are scaled in such a way that they are
dimensionless. Since the power is given by the slope, it
agrees with the theoretical model where the relationship
between period and length was a square root function.
We can also verify that the theoretically predicted y in-
tercept is:

btheory =
1

2
log

(
4π2

g

)
= 0.303± 0.001 (19)

which roughly agrees with the value obtained from the
logarithmic plot.

B. Mass Dependance

Various masses from 0.029kg to 0.338kg were used for
the pendulum, and shown in figure 5. If a linear fit is
used, the slope is given by:

m = −0.01± 0.03 (20)
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FIG. 5. A plot of the period against the mass of the pen-
dulum. Notice that the variations are similar in size to the
uncertainties.

which is effectively zero. As mentioned in the introduc-
tion, the instrumentation is insensitive enough that any
variation in the center of mass due to changing the water
level will not be noticeable, so this behaviour is expected.

IV. DISCUSSION

A. Length Dependance

The precision of all measurements were extremely high.
Since there were over 200 data points, but they were
merged together in groups of five, the time uncertainty
for the period will be negligible. The length measure-
ments were done by a computer, and ideally, they should
be overestimated the same amount of times they are un-
derestimated such that the average length is very precise
as well. This is why error bars were barely noticeable.
However, even though the experimental results seem to
agree with the theoretical predictions, they were still off
by a little bit. For example, the predicted slope in figure
3 had a minimum of 4.01s2 m−1 while the value for the
experimental slope had a maximum value of 4.00s2 m−1.
These small dispecrancies are still worthy of investiga-
tion, and can be caused by two main things:

• Systematic error: While measurements were very
precise, they could all be consistently off the true
value by some fixed amount.

• Incorrect model: The model introduced in the hy-
pothesis may not be entirely correct and there can
be external factors that have a larger impact than
previously thought.

1. Systematic Errors

The largest form of systematic error would be the mea-
surement of the length of the pendulum. However, if
the length of the string was consistently measured to be
smaller than the true value by a certain amount x, then
the distance from the endpoint of the string to the center
of mass of the bottle would be larger by the same amount
x such that `cm is a constant. Furthermore, shifting the
length by a fixed amount does not affect the value of the
slope, only the y intercept.

Another way the string could be measured incorrectly
is an incorrect scaling factor to convert from pixels to me-
ters. While a ruler was placed in the background to set
a scale, that scale was found to be inaccurate and only
served to ensure the final numbers were in the right or-
der of magnitude. An additional scaling factor was manu-
ally determined by measuring the initial 1.985m string to
±0.003cm accuracy. This fairly large uncertainty comes
from the fact that multiple measurements had to be made
and the string was attached at an angle such that the ver-
tical distance the string extends is not equal to the length
of the string. This means that the length of the string
could be scaled up or scaled down by a factor of

`measured

`true
=

(
1± 0.003

1.98

)
(21)

This means that if the slope is m, then it adds on another
uncertainty of around:

δm = m

(
0.003

1.98

)
≈ 0.01s2 m−1 (22)

which is approximately the difference between the upper
and lower bounds of the theoretical value and the exper-
imental value for the slope of the linearized graph.

2. Other Factors

Contradictions appear to arise when the original func-
tion is fit to the function:

T =

√
α · I + `2cm

`cm
(23)

to determine the value of I, which is the specific moment
of inertia. This is done in 6. The value for α and I are
given as:

α = 4.015± 0.008s2 m−1 (24)

I = −0.0228± 0.0007m2 (25)

Note that the theoretical value of α is given in equation
12 as αtheory = 4.03±0.02s2 m−1. Here, the experimental
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FIG. 6. A plot of the period against the length of the center
of mass of the pendulum. Notice that the plot visually looks
much more accurate than that of 2.

value is closer to the theoretical model than that shown
in figure 3. However, the moment of inertia takes on
a negative value, which is simply impossible! The un-
certainty is also very low, so this suggests that there is
something wrong with the physical model. I claim that
this is due to neglecting the effects of air resistance. As
shown in the first lab, the true angular frequency of an
underdampened pendulum is:

ω =

√√√√ω2
0

(
1−

(
2

Q

)2
)

(26)

However, both air resistance and an extra moment of
inertia will tend to increase the period, not decrease it.
Therefore, there is some mechanism that is adding in
energy. One possible mechanism that can accomplish this
is that the manual rising of the string could be increasing
the angular speed. I will investigate how large of an effect
this is by writing out the rotational equation of motion
as:

dL

dt
=

d

dt

(
m`2ω

)
= −mg` sin θ (27)

Applying the product rule, this gives:

2m`ω
d`

dt
+
dω

dt
m`2 = −mg` sin θ (28)

d2θ

dt2
= −g

`
θ +

2 ˙̀

`
θ̇ (29)

The average value for ˙̀ is ˙̀
avg = 0.00440±0.00001m s−1.

The effective damping coefficient is now negative, which
means that the period should be shorter than expected.
Similar to 26, we can derive the period as:

T = T0

√√√√√
1− 1

ω2
0

(
˙̀

`

)2
 (30)

Comparing this to equation 23, which can be written as:

T = T0

√(
1 +

I

`2

)
(31)

We can derive the specific moment of inertia to then be:

I = −`
˙̀2

g
≈ −5× 10−6m2 (32)

which is essentially negligible. It appears that there is no
straightforward explanation to why the theoretical model
overestimates the period. Accounting for a nonzero mo-
ment of inertia and air resistance damping effects only
leads to an increase in the period, not a decrease. More
experimentation needs to be done to pin down the reason
behind this dispecrancy. As a result, it is likely this is
due to a systematic error of how certain measurements
were made, that were not included in the previous sec-
tion. For example, perhaps I have overestimated the pre-
cision at which the string length can be measured. It is
recommended that the experiment be completed again,
including any or a combination of the following modifi-
cations:

• Using a small but heavy mass.

• Taking period measurements in multiple indepen-
dent methods.

• Changing the string length in a different way.

• Measuring the string length in multiple indepen-
dent methods.

B. Mass Dependance

1. Systematic Errors

Many systematic errors that appear in the length de-
pendance are not significant when looking at the length
dependance. As long as the length of the string can be
measured precisely, it does not matter how accurately it
is measured. For example, it is perfectly acceptable even
if every measurement of the length is larger than the true
amount by 5cm, as long as this error is consistent. This
is because I am looking if there is a trend when the mass
is changed.

A kitchen scale was used to measure the mass of the
bottle, which has a precision of ±0.5g. Timing was done
with a stopwatch and from the mini experiment described
in the Introduction, I found myself to stop the stopwatch
earlier roughly the same amount of times I stopped it
late. As a result, it is very unlikely that there are any
systematic errors that could affect the measurements.
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2. Other Factors

The center of mass of the system can change, but this
is already analyzed in the Introduction, which showed
that variations in period due to this is very likely unno-
ticeable. Another contributing factor could be air resis-
tance. From equation 26, we can show that the period of
the pendulum is:

T = T0

√
1 +

(
2

Q

)2

(33)

Since Q ≡ m
b

√
`
g , decreasing the mass effectively de-

creases the Q factor by the same proportion. The pen-
dulum used has an average center of mass of `cm =
2.015± 0.003m, so the Q factor is around:

Qnew = Qbefore

√
201.5

115
= 433± 4 (34)

where the quality factor at a length of `cm = 115cm was
Qbefore = 247 ± 2. This means that for a mass m, the
quality factor is:

Q =
m

338
· (443± 4) (35)

For the lowest mass, this gives a Q factor of approxi-
mately:

Q = 37.1± 0.3 (36)

This means that the relative error in the period uncer-
tainty is around:

δT = T

(
2

Q2

)
= 0.004 (37)

which also coincidentally happened to be within my mea-
surement error. Therefore, the mass does not greatly
impact the motion of the pendulum. The fluctuations
could very easily be caused by external factors such as
a changing center of mass and air resistance. The next
steps would be to develop a method to lower measure-
ment uncertainties such that these other factors can be
quantified, measured, and accounted for. One possible
method is to poke a small hole such that water slowly
drains out. However, I will need to be careful as large
holes will cause the water to drain out too quickly and
small holes will cause surface tension to have a large ef-
fect.

V. CONCLUSION

In conclusion, the experiment supported the validity of

the approximation T = 2π
√

`cm
g as the period of a pen-

dulum. Both the length and the mass affected the period

how it was expected to. However, when accounting for
other effects such as air resistance, a changing center of
mass, and a nonzero moment of inertia, the proposed
models to account for these effects do not hold up well
to the experiment. They reveal inconsistencies between
theory and experiment.

It is strongly recommended that this experiment be
completed again. For verifying the length dependance, a
heavy small object should replace the water bottle and
for the mass dependance, a small hole should be poked
to allow water to leak out, which slowly decreases the
mass. For both experiments, length and time measure-
ments should be made to even higher accuracy and pre-
cision in order to quantify the additional effects listed
above.

Appendix A: Data

As always, the data points, as well as the Python code
is provided on Github, for accountability purposes.

https://github.com/QiLinXue/pendulum-labs/
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