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1 DAMPED HARMONIC MOTION

1 Damped Harmonic Motion
1.1 Introduction

The Setup: An object undergoing Damped harmonic motion experiences a restoring force −kx and a resistive force −bdx
dt

.
The differential equation is:

d2x

dt2
+ γ

dx

dt
+ ω2

0x (1)

where γ = b

m
and ω2

0 = k

m
.

Warning: Most authors prefer to write the differential equation as

d2x

dt2
+ 2γ dx

dt
+ ω2

0x

as it makes the solution less complicated (i.e. less fractions). Therefore, be very careful when trying to find equations
online as we may not all be defining variables the same way.

Motivation for Solution: In general, a solution to a second order linear differential equation is a sum of exponentials, i.e. it
is in the form of

x(t) = Aeα1t +Beα2t

where α1, α2 are solutions to a particular quadratic equation (see Appendix for details), where there are three options:

• Quadratic equation has 2 solutions =⇒ Then x(t) is a sum of 2 exponential decays.

• Quadratic equation has 1 solution =⇒ Then x(t) is a single exponential decay.

• Quadratic equation has 0 solutions =⇒ Then the roots are complex. Recall from ESC194 that complex exponents lead
to sinusoidal functions, so x(t) will have a sinusoidal component.

1.2 Underdamping (γ < 2ω0)
We can define

ω2 = ω2
0 −

γ2

4 , (2)

which will be the new angular frequency. Damping reduces the frequency.1 The equation of motion is given by

xunderdamped(t) = Ae−γt/2 cos(ωt+ φ) (3)

where A and φ are determined by initial conditions.

1.3 Overdamping (γ > 2ω0)
If γ > 2ω0, then the equation of motion is given by

xoverdamped(t) = C1e
−µ1t + C2e

−µ2t (4)

where we have2

µ1 = γ

2 +
√
γ2

4 − ω
2
0 (5)

µ2 = γ

2 −
√
γ2

4 − ω
2
0 (6)

and C1, C2 are determined by initial conditions.
1However, this is mostly irrelevant, because if γ is large enough to make ω differ appreciably from ω0, then the motion becomes negligible after

a few cycles anyways. For example, if ω differs from ω0 be even 20%, then after just 2 cycles, the amplitude would have decrease to 0.01% of the
initial.

2This shows why most physicists choose to use the 2γ factor, as it reduces a lot of fractions.
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1.4 Critical Damping (γ = 2ω0)
Critical damping occurs at γ = 2ω0, then the equation of motion is given by

xcritical(t) = (A+Bt)e−ω0t (7)

where A and B are determined by initial conditions.

Importance of Critical Damping: Critically damped motion has the property that it converges to the origin in the quickest
manner, that is, quicker than both the overdamped and underdamped motions.

1.5 Energy of Underdamped Oscillations
Note: We will only focus on very underdamped oscillations.

Underdamped: For simplicity, let us assume φ = 0. The energy of a damped harmonic oscillator is:

E = 1
2mẋ

2 + 1
2kx

2. (8)

Substituting in x(t) gives
E = 1

2mA
2
0 exp (−γt) (mω2

0 sin2(ω0t) + k cos2(ω0t) + ω2
0) (9)

This is very messy, so we want to make approximations.

Very Underdamped: If we look at the case where γ � ω0, we can reduce this to

E = 1
2mA

2
0ω

2
0 exp (−γt) = E0 exp(−γt) (10)

as the γ, γ2 terms approach zero. We can double check that when γ = 0, this reduces to E = 1
2kA

2
0.

We can define the lifetime to be τ = 1
γ
.

1.5.1 Rate of Energy Loss

The rate of energy loss in a very underdamped system is given by
dE

dt
= −γE (11)

Note that E here represents the average energy over a period T .

1.5.2 Q-Factor

We can define the Q-factor to be

Q = ω0

γ
. (12)

If we consider a very underdamped oscillator (where γ � ω0), then
E(t1)− E(t1 + T )

E(t1) ≈ γT ≈ 2πγ
ω

= 2π
Q
. (13)

Therefore, we have Q = E(t0)
(E(t1)− E(t1 + T ))/2π , which is equivalent to the ratio of the initial energy divided by the energy

loss per radian:

Q = initial energy stored
energy loss per radian (14)

We can also use the Q-factor to write the differential equation as
d2x

dt2
+ ω0

Q

dx

dt
+ ω2

0x = 0 (15)

and

ω = ω0

(
1− 1

4Q2

)1/2
(16)
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2 Driven Harmonic Motion
x‘ Suppose there is a driving force of the form F = F0 cos(ωt). Our differential equation becomes

F0 cos(ωt) = d2x

dt2
+ γ

dx

dt
+ ω2

0 (17)

2.1 Undamped Forced Oscillations
The solution is in the form of

x(t) = A(ω) cos(ωt− δ) (18)

where
tan δ = 0 (19)

so δ = 0 (if ω < ω0) or δ = π (if ω > ω0). We have

A(ω) =
∣∣∣∣ a

1− ω2/ω2
0

∣∣∣∣ (20)

where a ≡ F0

k
.

2.2 Damped Forced Oscillations
Similarly, the equation is in the same form, except

tan δ = ωy

ω2
0 − ω2 (21)

and
A(ω) = ω2

0a√
(ω2

0 − ω2)2 + (ωγ)2
(22)

There are three important regimes:

• ω → 0 gives A(ω)→ a = F0

k

• ω → ω0 gives A(ω)→ aω0

γ

• ω →∞ gives A(ω)→ 0

The phase shift is separated into three regimes as well:

• ω → 0 gives δ → 0

• ω → ω0 gives δ → π

2
• ω →∞ gives δ → π.

2.3 Power
The power of the damping force is

P̄damping = −1
2b(ωA)2 (23)

and
P̄driving = 1

2F0ωA sin δ = 1
2b(ωA)2 (24)

after making the substitution sin δ = γωmA

F0
. We can also write P̄driving in terms of the frequency:

P̄driving = F 2
0

2γm ·
γ2ω2

(ω2
0 − ω2)2 + γ2ω2 (25)
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2.3.1 The P̄ (ω) Curve

If the driving frequency is close to the natural frequency, we can write

ω2 − ω2
0 ≈ −2ω0∆ω, (26)

such that
P̄ (ω) = F 2

0
2mγ

γ2

4(∆ω)2 + γ2 (27)

2.4 Transient Phenomena
Recall that there are actually two solutions to the differential equation. One is the steady state forced oscillations, however
there is another solution known as the transient response:

x1(t) + x2(t) = A(ω) cos(ωdt− δ) +B exp
(
−γt2

)
cos (ωdampedt+ φ) (28)
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3 COUPLED HARMONIC OSCILLATORS

3 Coupled Harmonic Oscillators
Suppose we h
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4 APPENDIX

4 Appendix
4.1 Derivations
Guessing a solution of the form x(t) = Ceαt, and substituting it into the ODE gives the characteristic equation

α2 + γα+ ω2
0 = 0 (29)

which has the solution
α = −γ +

√
γ2 − 4ω2

0
2 (30)

The three cases for what the discriminant γ2 − 4ω2
0 can be gives us the three cases of motion.

Underdamping: In this case,
√
γ2 − 4ω2

0 is an imaginary number, so let us write: α = −γ/2 + i
√

4ω2
0 − γ2. We can define

ω such that
α = −γ/2 + iω. (31)

Substituting this back into our original guess (and using a linear combination), we get:

xunderdamped(t) = C1e
(−γ/2+iω)t + C2e

(−γ/2−iω)t (32)
= e−γt/2 (C1e

iωt + C2e
−iωt) (33)

Since x(t) has to be real, the part inside the parentheses has to be real, which means the two terms are complex conjugates of
each other. This means that if C1 = Ceiφ, then we must have C2 = Ce−iφ. Making this substitution leads to

xunderdamped(t) = 2Ce−γt/2 cos(ωt+ φ) (34)

Overdamping: Note that µ1 and µ2 are simply the two solutions to the characteristic equation, so we are left with a simple
sum of exponentials:

C1e
−µ1t + C2e

−µ2t, (35)

obtained by straightforward substitution.

Critical Damping: There is only one root, so a naive guess may be that x(t) = Ce−γ/2t, but this cannot be the case as there
is only one parameter, C, which cannot satisfy two freely chosen initial conditions (i.e. initial position and velocity). It turns
out (covered in ESC194) that another solution is te−γ/2t, so the full solution is the linear combination

xcritically damped(t) = C1e
−γ/2t + C2te

−γ/2t (36)
= (C1 + C2t)e−γ/2t (37)
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