PHY293: Tutorial Problems
 Tutorial 1 Solutions

QiLin Xue

Fall 2021

1. (a) The angular frequency is

$$
\omega=\sqrt{\frac{k}{m}}=5 \mathrm{rad} / \mathrm{s}
$$

(b) The total mechanical energy of the system is equal to the potential energy at maximum compression:

$$
E=\frac{1}{2} k A^{2}=0.36 \mathrm{~J} .
$$

(c) Using conservation of energy, we have

$$
E=\frac{1}{2} m v^{2}+\frac{1}{2} k x(0)^{2} .
$$

We know everything except v, so solving for it gives $v=0.566 \mathrm{~m} / \mathrm{s}$. We want velocity so the answer is

$$
\vec{v}=0.566 \mathrm{~m} / \mathrm{s} \text { [right]. }
$$

(d) We have $x(t)=A \sin (\omega t+\phi)$. Using the initial condition $x(0)=-0.04 \mathrm{~m}$, we have $-0.333=\sin (\phi)$. We get two solutions: $\phi=-19.47^{\circ}$ and $\phi=199.5^{\circ}$. We want $v(0)=A \omega \cos (\phi)>0$, so the right solution is $\phi=19.47^{\circ}$.
(e) The spring will reach equilibrium when $\sin (\omega t+\phi)=0$, or when $\omega t+\phi=0$. This occurs after a time

$$
\Delta t=\frac{-\phi}{\omega}=0.0680 \mathrm{~s} .
$$

Since the spring is symmetric across equilibrium, it takes another Δt seconds to reach +0.040 m , so the time at which it first reaches here is

$$
t_{1}=2 \Delta t=0.136 \mathrm{~s}
$$

The period is $T=\frac{2 \pi}{\omega}=1.257 \mathrm{~s}$, so the time at which the block reaches this location a second time (i.e. on the way back) is:

$$
t_{2}=T / 2=0.628 \mathrm{~s} \text {. }
$$

2. The velocity function is given by $v(t)=A \omega \cos (\omega t+\phi)$. The maximum speed is $A \omega=2 \mathrm{~cm} / \mathrm{s}$, and $v(0)=-1$, so we have $-1=2 \cos (\phi)$. Solving for ϕ gives $\phi=120^{\circ}$ and $\phi=240^{\circ}$.
The mass is travelling to the left and is about to reach maximum elongation, so the position $x(t)=A \sin (\phi)$ is negative. Therefore, we have $\phi=240^{\circ}$.
3. System 1: The angular frequency is $\omega=\sqrt{\frac{k_{a}}{m}}$.

System 2: Suppose the block is moved a distance x from equilibrium. Then the equation of motion (from $F=m a$) is:

$$
m a=-k_{b} x+\left(-k_{b} x\right)=-2 k_{b} x .
$$

Therefore, the effective spring constant is $2 k_{b}$ and the angular frequency is $\omega=\sqrt{\frac{2 k_{b}}{m}}$.
System 3: We claim that the effective spring constant is $\frac{k_{c}}{2}$. There are three ways to see this:

- Method 1: The springs are identical, so if one spring stretches by $\Delta x / 2$, then the other spring will also stretch by $\Delta x / 2$, resulting in a net stretch of Δx. Therefore, when the mass moves a distance x, it only experiences a force of $-k(x / 2)$.
- Method 2: We can view this as one long spring. Recall from CIV102 that the spring constant is $k=\frac{E A}{L}$, where E is the Young's Modulus, A is the cross sectional area, and L is the length. We're not changing E or A, but by doubling L, we are halving k.
- Method 3: Let the mass move a distance d and let the spring attached to it get stretched a distance Δx_{1}, and let the spring attached to the wall get stretched a distance Δx_{2}. We want to relate Δx_{1} and Δx_{2}. From Newton's third law, we have

$$
k_{c} \Delta x_{1}=k_{c} \Delta x_{2} \Longrightarrow \Delta x_{1}=\Delta x_{2}
$$

and we can continue with the same argument as method 1 . However, this is a bit more general and can be used when the spring constants are not equal.
The angular frequency is then $\omega=\sqrt{\frac{k_{c}}{2 m}}$. These frequencies are all equal, so we have

$$
\sqrt{\frac{k_{a}}{m}}=\sqrt{\frac{2 k_{b}}{m}}=\sqrt{\frac{k_{c}}{2 m}} \Longrightarrow k_{a}=2 k_{b}=k_{c} / 2
$$

which leads to the desired ratio of

$$
k_{a}: k_{b}: k_{c}=1: 1 / 2: 2
$$

4. We can consider the forces acting on it. There is a gravitational force $m g$ downwards and a normal force N upwards. The mass will loss contact with the platform when $N=0$, i.e. when the acceleration of the block is g.
The platform moves with a position $y(t)=A \sin (\omega t)$ where $\omega=2 \pi f=15.7 \mathrm{rad} / \mathrm{s}$. Then the acceleration is $a(t)=$ $A \omega^{2} \sin (\omega t)$ and reaches a maximum value of $A \omega^{2}$. This is equal to g when

$$
A=g / \omega^{2}=0.04 \mathrm{~m} \text {. }
$$

5. (a) We want to find an amplitude A such that

$$
\begin{equation*}
10 \cos (\omega t)=10 \cos (\omega t+1)+A \cos (\omega t+\phi) \tag{1}
\end{equation*}
$$

or alternatively:

$$
\begin{aligned}
10 \cos (\omega t)-10 \cos (\omega t+1) & =10(-2 \sin ((\omega t+\omega t+1) / 2) \cos ((\omega t-\omega t-1) / 2)) \\
& =-20 \sin (\omega t+0.5) \sin (-1 / 2) \\
& =9.59 \sin (\omega t+0.5)
\end{aligned}
$$

where we used the difference in cosine formula. Therefore, the magnitude is $\left|I_{2}\right|=9.59 \mathrm{~A}$. There is actually a nice geometric interpretation of this using phasors. We want:

The sum of the two phasors $I_{1}+I_{2}$ needs to be horizontal (which represents no phase shift), and we can determine this using cosine law:

$$
\begin{equation*}
\left|I_{2}\right|=\sqrt{10^{2}+10^{2}-2(10)(10) \cos (1)}=9.59 \tag{2}
\end{equation*}
$$

(b) Using the same idea, note that the smallest $\left|I_{2}\right|$ such that the sum of the two phasors lie on the horizontal line is if I_{2} is perpendicular to I_{0}, in which we can use standard trigonometry:

$$
\begin{equation*}
I_{2}=I_{1} \sin (1)=8.41 \mathrm{~A} \tag{3}
\end{equation*}
$$

6. The period does not depend on the mass, so we have

m
The period depends on length as $T \propto \sqrt{\ell}$, so we have:
Period Dependance on Length

7. (a) Using trigonometry, we have

$$
\begin{equation*}
\theta=\sin ^{-1}\left(\frac{0.0350}{0.750}\right)=2.67^{\circ} \tag{4}
\end{equation*}
$$

The small angle approximation can be used.
Note: To be more complete, using this θ results in approximately a 0.04% error. This is much less error than possible uncertainties in the length and position measurements.
(b) The initial height (measured from the top) is

$$
\begin{equation*}
h=\sqrt{0.750^{2}-0.0350^{2}}=0.74918 \mathrm{~m} \tag{5}
\end{equation*}
$$

so there is a height difference of $\Delta h=0.000817 \mathrm{~m}$ between the maximum and lowest point. Energy conservation tells us the maximum speed is

$$
\begin{equation*}
v=\sqrt{2 g \Delta h}=0.127 \mathrm{~m} / \mathrm{s} \tag{6}
\end{equation*}
$$

(c) This is a fourth of the period, so the time to reach this speed is

$$
\begin{equation*}
t=T / 4=\frac{1}{4} \cdot 2 \pi \sqrt{\frac{\ell}{g}}=0.434 \mathrm{~s} . \tag{7}
\end{equation*}
$$

8. (a) The relationship between a conservative force and potential energy is

$$
\begin{equation*}
F=-\frac{\mathrm{d} U}{\mathrm{~d} x} \tag{8}
\end{equation*}
$$

Applying this, we get

$$
\begin{equation*}
F=\frac{6 a}{x^{7}}-\frac{12 b}{x^{13}} . \tag{9}
\end{equation*}
$$

(b) Equilibrium occurs when $F=0$, or when:

$$
\begin{equation*}
\frac{6 a}{x^{7}}=\frac{12 b}{x^{13}} \Longrightarrow x_{0}=\left(\frac{2 b}{a}\right)^{1 / 6} \tag{10}
\end{equation*}
$$

(c) The angular frequency at equilibrium is equal to

$$
\begin{equation*}
\omega=\sqrt{\frac{U^{\prime \prime}(x)}{m}}=\sqrt{\frac{F^{\prime}(x)}{m}} \tag{11}
\end{equation*}
$$

Taking the derivative again, we get

$$
\begin{equation*}
F^{\prime}(x)=-\frac{6 a}{x^{7}} \frac{7}{x}+\frac{12 b}{x^{13}} \frac{13}{x} \tag{12}
\end{equation*}
$$

Letting $\frac{6 a}{x^{7}}=\frac{12 b}{x^{13}}$, we have:

$$
\begin{aligned}
F^{\prime}\left(x_{0}\right) & =-\frac{6 a}{x_{0}^{7}} \frac{7}{x_{0}}+\frac{6 a}{x_{0}^{7}} \frac{13}{x_{0}} \\
& =\frac{6 a}{x_{0}^{6}}\left(\frac{13}{x_{0}^{2}}-\frac{7}{x_{0}^{2}}\right) \\
& =\frac{6 a}{x_{0}^{6}}\left(\frac{6}{x_{0}^{2}}\right)
\end{aligned}
$$

Letting $x_{0}=\left(\frac{2 b}{a}\right)^{1 / 6}$ and substituting this in, we have

$$
\begin{equation*}
F^{\prime}\left(x_{0}\right)=36 a \frac{a}{2 b}\left(\frac{a}{2 b}\right)^{1 / 3}=36 a\left(\frac{a}{2 b}\right)^{4 / 3} \tag{13}
\end{equation*}
$$

