PHY293: Tutorial Problems **Tutorial 1 Solutions**

QiLin Xue

Fall 2021

1. (a) The angular frequency is

$$\omega = \sqrt{\frac{k}{m}} = 5 \text{ rad/s}$$

(b) The total mechanical energy of the system is equal to the potential energy at maximum compression:

$$E = \frac{1}{2}kA^2 = 0.36 \text{ J}$$

(c) Using conservation of energy, we have

$$E = \frac{1}{2}mv^2 + \frac{1}{2}kx(0)^2.$$

We know everything except v, so solving for it gives v = 0.566 m/s. We want velocity so the answer is

$$\vec{v}=0.566~{\rm m/s}~{\rm [right]}$$

- (d) We have $x(t) = A\sin(\omega t + \phi)$. Using the initial condition x(0) = -0.04 m, we have $-0.333 = \sin(\phi)$. We get two solutions: $\phi = -19.47^{\circ}$ and $\phi = 199.5^{\circ}$. We want $v(0) = A\omega\cos(\phi) > 0$, so the right solution is $\phi = 19.47^{\circ}$.
- (e) The spring will reach equilibrium when $\sin(\omega t + \phi) = 0$, or when $\omega t + \phi = 0$. This occurs after a time

$$\Delta t = rac{-\phi}{\omega} = 0.0680 \; \mathrm{s}$$

Since the spring is symmetric across equilibrium, it takes another Δt seconds to reach +0.040 m, so the time at which it first reaches here is

$$t_1 = 2\Delta t = 0.136$$
 s.

The period is $T = \frac{2\pi}{\omega} = 1.257$ s, so the time at which the block reaches this location a second time (i.e. on the way back) is:

$$t_2 = T/2 = 0.628 \ {
m s}$$

2. The velocity function is given by $v(t) = A\omega \cos(\omega t + \phi)$. The maximum speed is $A\omega = 2 \text{ cm/s}$, and v(0) = -1, so we have $-1 = 2\cos(\phi)$. Solving for ϕ gives $\phi = 120^{\circ}$ and $\phi = 240^{\circ}$.

The mass is travelling to the left and is about to reach maximum elongation, so the position $x(t) = A \sin(\phi)$ is negative. Therefore, we have $\phi = 240^{\circ}$. 3. System 1: The angular frequency is $\omega = \sqrt{\frac{k_a}{m}}$.

System 2: Suppose the block is moved a distance x from equilibrium. Then the equation of motion (from F = ma) is:

$$ma = -k_b x + (-k_b x) = -2k_b x.$$

Therefore, the effective spring constant is $2k_b$ and the angular frequency is $\omega = \sqrt{\frac{2k_b}{m}}$.

System 3: We claim that the effective spring constant is $\frac{k_c}{2}$. There are three ways to see this:

- Method 1: The springs are identical, so if one spring stretches by $\Delta x/2$, then the other spring will also stretch by $\Delta x/2$, resulting in a net stretch of Δx . Therefore, when the mass moves a distance x, it only experiences a force of -k(x/2).
- Method 2: We can view this as one long spring. Recall from CIV102 that the spring constant is $k = \frac{EA}{L}$, where E is the Young's Modulus, A is the cross sectional area, and L is the length. We're not changing E or A, but by doubling L, we are halving k.
- *Method 3:* Let the mass move a distance d and let the spring attached to it get stretched a distance Δx_1 , and let the spring attached to the wall get stretched a distance Δx_2 . We want to relate Δx_1 and Δx_2 . From Newton's third law, we have

$$k_c \Delta x_1 = k_c \Delta x_2 \implies \Delta x_1 = \Delta x_2$$

and we can continue with the same argument as method 1. However, this is a bit more general and can be used when the spring constants are not equal.

The angular frequency is then $\omega=\sqrt{\frac{k_c}{2m}}.$ These frequencies are all equal, so we have

$$\sqrt{\frac{k_a}{m}} = \sqrt{\frac{2k_b}{m}} = \sqrt{\frac{k_c}{2m}} \implies k_a = 2k_b = k_c/2$$

which leads to the desired ratio of

$$k_a: k_b: k_c = 1: 1/2: 2.$$

4. We can consider the forces acting on it. There is a gravitational force mg downwards and a normal force N upwards. The mass will loss contact with the platform when N = 0, i.e. when the acceleration of the block is g.

The platform moves with a position $y(t) = A\sin(\omega t)$ where $\omega = 2\pi f = 15.7$ rad/s. Then the acceleration is $a(t) = A\omega^2 \sin(\omega t)$ and reaches a maximum value of $A\omega^2$. This is equal to g when

$$A=g/\omega^2=0.04~{\rm m}$$

5. (a) We want to find an amplitude A such that

$$10\cos(\omega t) = 10\cos(\omega t + 1) + A\cos(\omega t + \phi), \tag{1}$$

or alternatively:

$$10\cos(\omega t) - 10\cos(\omega t + 1) = 10(-2\sin((\omega t + \omega t + 1)/2)\cos((\omega t - \omega t - 1)/2))$$

= -20\sin(\omega t + 0.5)\sin(-1/2)
= 9.59\sin(\omega t + 0.5)

where we used the difference in cosine formula. Therefore, the magnitude is $|I_2| = 9.59 \text{ A}|$. There is actually a nice geometric interpretation of this using phasors. We want:

The sum of the two phasors $I_1 + I_2$ needs to be horizontal (which represents no phase shift), and we can determine this using cosine law:

$$|I_2| = \sqrt{10^2 + 10^2 - 2(10)(10)\cos(1)} = 9.59.$$
 (2)

(b) Using the same idea, note that the smallest $|I_2|$ such that the sum of the two phasors lie on the horizontal line is if I_2 is perpendicular to I_0 , in which we can use standard trigonometry:

$$I_2 = I_1 \sin(1) = 8.41 \text{ A}$$
. (3)

6. The period does not depend on the mass, so we have

The period depends on length as $T\propto \sqrt{\ell}$, so we have:

Period Dependance on Length

7. (a) Using trigonometry, we have

$$\theta = \sin^{-1} \left(\frac{0.0350}{0.750} \right) = 2.67^{\circ} \tag{4}$$

The small angle approximation can be used.

Note: To be more complete, using this θ results in approximately a 0.04% error. This is much less error than possible uncertainties in the length and position measurements.

(b) The initial height (measured from the top) is

$$h = \sqrt{0.750^2 - 0.0350^2} = 0.74918 \text{ m.}$$
 (5)

so there is a height difference of $\Delta h = 0.000817$ m between the maximum and lowest point. Energy conservation tells us the maximum speed is

$$v = \sqrt{2g\Delta h} = 0.127 \text{ m/s}.$$
 (6)

(c) This is a fourth of the period, so the time to reach this speed is

$$t = T/4 = \frac{1}{4} \cdot 2\pi \sqrt{\frac{\ell}{g}} = 0.434 \text{ s.}$$
 (7)

8. (a) The relationship between a conservative force and potential energy is

$$F = -\frac{\mathrm{d}U}{\mathrm{d}x} \tag{8}$$

Applying this, we get

$$F = \frac{6a}{x^7} - \frac{12b}{x^{13}}.$$
(9)

(b) Equilibrium occurs when F = 0, or when:

$$\frac{6a}{x^7} = \frac{12b}{x^{13}} \implies \boxed{x_0 = \left(\frac{2b}{a}\right)^{1/6}}.$$
(10)

(c) The angular frequency at equilibrium is equal to

$$\omega = \sqrt{\frac{U''(x)}{m}} = \sqrt{\frac{F'(x)}{m}}.$$
(11)

Taking the derivative again, we get

$$F'(x) = -\frac{6a}{x^7}\frac{7}{x} + \frac{12b}{x^{13}}\frac{13}{x}.$$
(12)

Letting $\frac{6a}{x^7} = \frac{12b}{x^{13}}$, we have:

$$F'(x_0) = -\frac{6a}{x_0^7} \frac{7}{x_0} + \frac{6a}{x_0^7} \frac{13}{x_0}$$
$$= \frac{6a}{x_0^6} \left(\frac{13}{x_0^2} - \frac{7}{x_0^2}\right)$$
$$= \frac{6a}{x_0^6} \left(\frac{6}{x_0^2}\right)$$

Letting $x_0 = \left(\frac{2b}{a}\right)^{1/6}$ and substituting this in, we have

$$F'(x_0) = 36a \frac{a}{2b} \left(\frac{a}{2b}\right)^{1/3} = 36a \left(\frac{a}{2b}\right)^{4/3}.$$
(13)