PHY294: Practice Problems
 Problem Set 2 Solutions

QiLin Xue

Winter 2022
(9.1) The magnitude is $S=\sqrt{s(s+1)} \hbar=\sqrt{3} / 2 \hbar$ where $s=1 / 2$ for an electron, and $S_{z}= \pm \frac{1}{2} \hbar$. Therefore, the angle between \vec{S} and e_{z} is

$$
\begin{equation*}
\theta=\arccos \frac{S_{z}}{S}=54.736^{\circ} \tag{1}
\end{equation*}
$$

(9.3) (a) We have $S_{z}=m_{s} \hbar h$ where $m_{s} \in\{1,0,-1\}$. Therefore, it can take on three possible values.
(b) Angle can be calculated using same method as previous question.
(c) The minimum possible angle is when S_{z} is closest to S, i.e. when $m_{s}=1$. This gives

$$
\begin{equation*}
\theta_{\min }=45^{\circ} \tag{2}
\end{equation*}
$$

(9.5) This corresponds to the $1 s^{2} 2 s^{2} 2 p^{6}$ state.

- For $(n, \ell)=(1,0)$, we have $m=0$, so there are two possible values for m_{s}.
- For $(n, \ell)=(2,0)$, we have $m=0$, so there are two possible values for m_{s}.
- For $(n, \ell)=(2,1)$, we have $m \in\{-1,0,1\}$, so there are six possible values for m_{s}.
(9.8) The moment of inertia of a ball is $I \approx m r^{2}$ (Note that the distribution of mass may change this, possibly by a factor of $\frac{2}{5}$, but it's the order of magnitude that counts). The angular momentum is then:

$$
\begin{equation*}
m r^{2} \frac{v}{r} \sim \hbar \Longrightarrow \frac{v}{c} \sim \frac{\hbar}{m r c} \approx 40,000 \tag{3}
\end{equation*}
$$

which clearly isn't possible!
(9.9) (a) The magnetic moment is $\mu=I\left(\pi r^{2}\right)=1.26 \times 10^{-4} \mathrm{Am}^{2}$
(b) The torque is $\tau=\mu B \sin \theta=1.89 \times 10^{-4} \mathrm{~A} \mathrm{~m}^{2} \mathrm{~T}$.
(c) The potential energy is $U=-\mu B \cos \theta$. If B is flipped, then $\cos \theta$ goes from 1 to -1 , and therefore $\Delta U=-2 \mu B=$ $-3.78 \times 10^{-4} \mathrm{~J}$.
(9.11) Similar to above, we have $\mu=I\left(\pi r^{2}\right) \Longrightarrow I=\frac{\pi r^{2}}{\mu}=3.18 \times 10^{-4} \mathrm{~A}$.
(a) See below

WITHOUT magnetic field WITH magnetic field

(b) The energy difference between adjacent levels is $\mu_{B} B$, where $\mu_{B}=9.27 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$ is the Bohr magneton.
(a) Very similar to the above diagram except in the higher level there are $2 l+1=5$ sub-levels while in the lower level there are $2 l+1=3$ sub-levels.
(b) Since $\Delta E \propto L_{z}$, which is dependent on m_{i}, m_{f}, let us look at the number of distinct differences $m_{f}-m_{i}$ (now this is just a statistics problem!) If $m_{i}=1$, there are five possible differences. If $m_{i}=0$, there are still five possible differences, but only one of them will be new. The same goes for $m_{i}=-1$. Therefore, there are $5+1+1=7$ possible photon energies.
(c) To see why this is true, note that

$$
\begin{aligned}
E_{f} & =E_{0, f}+\mu_{B} B m_{f} \\
E_{i} & =E_{0, i}+\mu_{B} B m_{i}
\end{aligned}
$$

and so

$$
\begin{equation*}
E_{\gamma}=E_{f}-E_{i}=\left(E_{0, f}-E_{0, i}\right)+\mu_{B} B\left(m_{f}-m_{i}\right) \tag{4}
\end{equation*}
$$

The photon energy is dependent on $m_{f}-m_{i}$. Since this can only take on three values, the photon energy can only take on three values.
(9.19) (a) For the anomalous Zeeman effect, we have

$$
\begin{equation*}
E_{\text {diff }}=2 \mu_{B} B=1.3 \times 10^{-23} \mathrm{~J} \tag{5}
\end{equation*}
$$

(b) Using the relationship $E_{\gamma} \lambda=h c$, we determine the wavelength to be on the order of magnitude of 1 cm , which corresponds to microwaves.

