PHY294: Practice Problems Problem Set 2 Solutions

QiLin Xue

Winter 2022

(9.1) The magnitude is $S = \sqrt{s(s+1)}\hbar = \sqrt{3}/2\hbar$ where s = 1/2 for an electron, and $S_z = \pm \frac{1}{2}\hbar$. Therefore, the angle between \vec{S} and e_z is

$$\theta = \arccos \frac{S_z}{S} = 54.736^{\circ}. \tag{1}$$

(9.3) (a) We have $S_z = m_s \hbar h$ where $m_s \in \{1, 0, -1\}$. Therefore, it can take on three possible values.

- (b) Angle can be calculated using same method as previous question.
- (c) The minimum possible angle is when S_z is closest to S, i.e. when $m_s = 1$. This gives

$$\theta_{\min} = 45^{\circ}.$$
 (2)

(9.5) This corresponds to the $1s^22s^22p^6$ state.

- For $(n, \ell) = (1, 0)$, we have m = 0, so there are two possible values for m_s .
- For $(n, \ell) = (2, 0)$, we have m = 0, so there are two possible values for m_s .
- For $(n, \ell) = (2, 1)$, we have $m \in \{-1, 0, 1\}$, so there are six possible values for m_s .
- (9.8) The moment of inertia of a ball is $I \approx mr^2$ (Note that the distribution of mass may change this, possibly by a factor of $\frac{2}{5}$, but it's the order of magnitude that counts). The angular momentum is then:

$$mr^2 \frac{v}{r} \sim \hbar \implies \frac{v}{c} \sim \frac{\hbar}{mrc} \approx 40,000,$$
 (3)

which clearly isn't possible!

(9.9) (a) The magnetic moment is
$$\mu = I(\pi r^2) = 1.26 \times 10^{-4} \text{A} \text{ m}^2$$

- (b) The torque is $\tau = \mu B \sin \theta = 1.89 \times 10^{-4} \text{A m}^2 \text{ T}.$
- (c) The potential energy is $U = -\mu B \cos \theta$. If B is flipped, then $\cos \theta$ goes from 1 to -1, and therefore $\Delta U = -2\mu B = -3.78 \times 10^{-4}$ J.

(9.11) Similar to above, we have $\mu = I(\pi r^2) \implies I = \frac{\pi r^2}{\mu} = 3.18 \times 10^{-4} \text{A}.$

(9.15) (a) See below

- (b) The energy difference between adjacent levels is $\mu_B B$, where $\mu_B = 9.27 \times 10^{-24} \text{ J T}^{-1}$ is the Bohr magneton.
- (9.17) (a) Very similar to the above diagram except in the higher level there are 2l + 1 = 5 sub-levels while in the lower level there are 2l + 1 = 3 sub-levels.
 - (b) Since $\Delta E \propto L_z$, which is dependent on m_i, m_f , let us look at the number of distinct differences $m_f m_i$ (now this is just a statistics problem!) If $m_i = 1$, there are five possible differences. If $m_i = 0$, there are still five possible differences, but only one of them will be new. The same goes for $m_i = -1$. Therefore, there are 5 + 1 + 1 = 7 possible photon energies.
 - (c) To see why this is true, note that

$$E_f = E_{0,f} + \mu_B B m_f$$
$$E_i = E_{0,i} + \mu_B B m_i$$

and so

$$E_{\gamma} = E_f - E_i = (E_{0,f} - E_{0,i}) + \mu_B B(m_f - m_i).$$
(4)

The photon energy is dependent on $m_f - m_i$. Since this can only take on three values, the photon energy can only take on three values.

(9.19) (a) For the anomalous Zeeman effect, we have

$$E_{\rm diff} = 2\mu_B B = 1.3 \times 10^{-23} \,\rm J \tag{5}$$

(b) Using the relationship $E_{\gamma}\lambda = hc$, we determine the wavelength to be on the order of magnitude of 1 cm, which corresponds to microwaves.