PHY365: Quantum Information

QiLin Xue

Fall 2021

Contents

1 Overview of Quantum Computing 2
1.1 Quantum Coins . 2
1.2 Building a Better Computer . 2
1.2.1 Quantum Parallelism . 2
1.3 Quantum Mechanics of Quantum Computers . 3

2 Unitary Operators 4
2.1 $\operatorname{SU}(2)$. 4
2.2 Basis Change . 4
2.3 Time Evolution . 5
2.4 Measurements and Non-Unitary Operations . 5

3 Two Qubit State 6
3.1 Schmidt Decomposition Theorem . 6
3.2 Operations on Two Qubits . 7

4 Universal Two-Qubit Gates 8
4.1 Maximally Entangled States . 8

1 Overview of Quantum Computing

1.1 Quantum Coins

Consider a quantum coin that can be in a superposition of heads and tails. We can write its state as a vector:

$$
\begin{equation*}
|\Psi\rangle=\alpha|H\rangle+\beta|T\rangle \tag{1.1}
\end{equation*}
$$

which lives in the Hilbert Space. Inner products of these vectors can be written as

$$
\begin{equation*}
\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle . \tag{1.2}
\end{equation*}
$$

Born's Rule tells us we can compute the probability of tails to be $|\beta|^{2}$ and the probability of heads is $|\alpha|^{2}$. When there are two quantum coins, there can be four combinations of heads and tails, written as:

$$
\begin{equation*}
|\Psi\rangle=\alpha|H H\rangle+\beta|H T\rangle+\gamma T H\rangle+\delta|T T\rangle \tag{1.3}
\end{equation*}
$$

In quantum mechanics, we can construct the following state:

$$
\begin{equation*}
|\Psi\rangle=\frac{1}{\sqrt{2}}|H H\rangle+\frac{1}{\sqrt{2}}|T T\rangle \tag{1.4}
\end{equation*}
$$

which represents entanglement. If we measure the first coin, we can instantly know the outcome of the second coin, even if they are lightyears apart.

1.2 Building a Better Computer

How might we use quantum coins to help us build a "better" computer? Before we begin to understand and answer this question, let us understand some key concepts.

First, we can measure information as the number of bits (binary digits) that are needed to specify a message. Each bit in a computer requires a physical system that has two possible configurations.

- In semiconductor circuits, we use voltage.
- Magnetization is sometimes also used (i.e. in hard drives).
- Pits in optical storage.
- Paper tape with holes in it

Now let's extend the idea to quantum bits, i.e. qubits. Let us use $|0\rangle$ and $|1\rangle$ to represent the two possible states of a quantum coin, and we can write a qubit as

$$
\begin{equation*}
\left|\Psi_{1}\right\rangle=\alpha|0\rangle+\beta|1\rangle, \tag{1.5}
\end{equation*}
$$

which isn't necessarily interesting. If we have two qubits, we can write the state as

$$
\begin{equation*}
\left|\Psi_{2}\right\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle \tag{1.6}
\end{equation*}
$$

where the following notation are equivalent:

$$
\begin{equation*}
|00\rangle=|0\rangle|0\rangle=|0\rangle \otimes|0\rangle \tag{1.7}
\end{equation*}
$$

where \otimes is the tensor product of two vectors. To make it easier to write, we can also write it as:

$$
\begin{equation*}
\left|\Psi_{2}\right\rangle=\alpha\left|0_{2}\right\rangle+\beta\left|1_{2}\right\rangle+\gamma\left|2_{2}\right\rangle+\delta\left|3_{2}\right\rangle \tag{1.8}
\end{equation*}
$$

For three qubits, we have

$$
\begin{equation*}
\left|\Psi_{3}\right\rangle=\alpha|000\rangle+\beta|001\rangle+\gamma|010\rangle+\delta|011\rangle+\epsilon|100\rangle+\zeta|101\rangle+\eta|110\rangle+\theta|111\rangle . \tag{1.9}
\end{equation*}
$$

Therefore, N qubits will have 2^{N} possible states. This suggests that quantum memory can get big, fast.

1.2.1 Quantum Parallelism

However, this is not the only difference. Each qubit operation, i.e. $|0\rangle \longleftrightarrow|1\rangle$ affect all the probability amplitudes. This also suggests that quantum computers can be extremely efficient.

However, when we make measurements, N qubits only leads to N bits of information. Therefore, even though it is very efficient and quick, there is only a small amount of output.

Example 1: Consider $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ a periodic function that maps $x \in\left[0,2^{L}-1\right]$ (i.e. takes in an L bit integer). There is some X such that $f(x+X)=f(x)$ and we wish to find X.
In a classical computer, we would evaluate $f(x)$ for multiple values of x. In general, we would expect around 2^{L-1} calls in the routine.

However, in a quantum computer, we need L qubits to store values of x (i.e. in the. argument register) and L qubits to store the result of $f(x)$ in the function register. Through a series of bit flips, we can create the state

$$
\begin{equation*}
|x\rangle|0 \cdots 0\rangle \tag{1.10}
\end{equation*}
$$

where the first braket is the input and the second braket is the function register. Then suppose we have a quantum operation \hat{U}_{f} defined such that

$$
\begin{equation*}
\hat{U}_{f}|x\rangle|0\rangle=|x\rangle|f(x)\rangle \tag{1.11}
\end{equation*}
$$

But if we prepare the initial state of the register not in x, but in a superposition (achieved via a Hadamard gate), then we can write:

$$
\begin{equation*}
\hat{U}_{f} \frac{1}{N}\left(\sum_{x=0}^{2^{k}-1}|x\rangle\right)|0\rangle=\frac{1}{N} \underbrace{\sum_{x=0}^{2^{k}-1}|x\rangle|f(x)\rangle}_{\text {massively entangled state }} . \tag{1.12}
\end{equation*}
$$

The difference is that all values of $f(x)$ are generated by a single call on \hat{U}_{f}. If we now apply something called the Quantum Fourier Transform

$$
\begin{equation*}
\hat{U}_{Q F T} \sum_{x}|x\rangle|f(x)\rangle=\frac{1}{N} \sum_{x}|x\rangle|\tilde{f}(x)\rangle, \tag{1.13}
\end{equation*}
$$

where \tilde{f} is the fourier transform, which you will get a discrete graph of vertical bars separated a distance by $\frac{n}{X}$. If we do this a few times, we can extract what X is.

Quantum computers allow us in principle to evaluate periods very efficient. This is a very important problem in number theory since period finding helps a great deal in factoring.

Consider coprime n, a and define

$$
\begin{equation*}
f(x)=a^{x} \bmod n \tag{1.14}
\end{equation*}
$$

This is a periodic function with period r. If we can figure out what r is, then

$$
\begin{equation*}
\operatorname{gcd}\left(a^{r / 2} \pm 1, n\right) \tag{1.15}
\end{equation*}
$$

is a factor of n. This is known as Shor's Algorithm.

1.3 Quantum Mechanics of Quantum Computers

Suppose there are three qubits. Recall that there are $2^{3}=8$ possible configurations. These form a basis for a 8 -dimensional vector space. These basis states are known as a computational basis.

For a single basis $|\Psi\rangle=\alpha|0\rangle+\beta 1\rangle$, where α, β are complex probability amplitudes, then we have

$$
\begin{equation*}
|\alpha|^{2}+|\beta|^{2}=1 \Longleftrightarrow\left(\alpha^{*}, \beta^{*}\right)\binom{\alpha}{\beta}=1 \tag{1.16}
\end{equation*}
$$

Now suppose we apply a transformation (i.e. operators and gates):

$$
\begin{aligned}
\quad|\Psi\rangle \mapsto\left|\Psi^{\prime}\right\rangle \\
\alpha \mapsto \alpha^{\prime} \\
\beta \mapsto \beta^{\prime} .
\end{aligned}
$$

We can assume linearity (which has been experimentally validated), and therefore

$$
\begin{aligned}
& \alpha^{\prime}=u_{00} \alpha+u_{01} \beta \\
& \beta^{\prime}=u_{10} \alpha+u_{11} \beta
\end{aligned}
$$

which can be written as a matrix

$$
\binom{\alpha^{\prime}}{\beta^{\prime}}=\left(\begin{array}{ll}
u_{00} & u_{01} \tag{1.17}\\
u_{10} & u_{11}
\end{array}\right)\binom{\alpha}{\beta} \Longleftrightarrow\left|\Psi^{\prime}\right\rangle=\hat{U}|\Psi\rangle
$$

And the complex conjugates are

$$
\left(\alpha^{\prime *}, \beta^{\prime *}\right)=\left(\alpha^{*}, \beta^{*}\right)\left(\begin{array}{ll}
u_{00}^{*} & u_{10}^{*} \tag{1.18}\\
u_{01}^{*} & u_{11}^{*}
\end{array}\right) \Longleftrightarrow\left\langle\Psi^{\prime}\right|=\langle\Psi| \hat{U}^{\dagger}
$$

Here are some properties of the complex conjugate:

- $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$
- $\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| \hat{U}^{\dagger} \hat{U}|\Psi\rangle=1 \Longleftrightarrow \hat{U}$ is unitary, which is true for all valid quantum operations on a closed system.

Let's look at some example gates:

- Bit-flip gate:

$$
\hat{X}=\left(\begin{array}{ll}
0 & 1 \tag{1.19}\\
1 & 0
\end{array}\right)
$$

along with the rest of the Pauli matrices:

$$
\begin{align*}
\hat{Y} & =\left(\begin{array}{cc}
0 & -i \\
i & 0 .
\end{array}\right) \tag{1.20}\\
\hat{Z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1 .
\end{array}\right) \tag{1.21}\\
\hat{I} & =\left(\begin{array}{cc}
1 & 0 \\
0 & 1 .
\end{array}\right) \tag{1.22}
\end{align*}
$$

- Phase-flip gate: \hat{Z}. Note that the overall phase, or "global" phase is irrelevant, since the norm of the probabilities stay the same.

2 Unitary Operators

2.1 SU(2)

An arbitrary 2×2 unitary is a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $|a d-b c|^{2}=1$. In general, $a d-b c=e^{i \phi} \neq 1$. However in quantum computing, we don't typically care about the phase of our qubits, so without loss of generality, we can assume that $a d-b c=1$. These are known as special unitary matrices with dimension 2 , or $S U(2)$. We can therefore write it as

$$
\hat{U}=\left(\begin{array}{cc}
a & b \\
-b^{*} & a^{*}
\end{array}\right)
$$

Any unitary matrix can be written as a linear combination of $\hat{I}, \hat{X}, \hat{Y}, \hat{Z}$.. Particularly,

$$
\hat{U}=\left(\begin{array}{cc}
a_{1}+i a_{2} & b_{1}+i b_{2} \tag{2.1}\\
-b_{1}+i b_{2} & a_{1}-i a_{2}
\end{array}\right)=a_{1} \hat{I}+i b_{2} \hat{X}+i b_{1} \hat{Y}+i a_{2} \hat{Z}
$$

Note that

$$
\begin{align*}
1 & =a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2} \tag{2.2}\\
a_{1} & =\cos \theta \tag{2.3}\\
\left\{b_{2}, b_{1}, a_{2}\right\} & =\sin \theta\left\{n_{x}, n_{y}, n_{z}\right\} \tag{2.4}
\end{align*}
$$

We can thus express $\hat{U}=\cos \theta \hat{I}+i \sin \theta \boldsymbol{n} \cdot \boldsymbol{\sigma}$

2.2 Basis Change

We can introduce new bases use unitaries. Namely, $\hat{U}|0\rangle=|u\rangle, \hat{U}|1\rangle=\left|u_{\perp}\right\rangle$ are new basis vectors. These two will still be orthogonal.

2.3 Time Evolution

Suppose we have an evolving unitary

$$
\begin{equation*}
|\Psi(t)\rangle=\hat{U}(t)|\Psi(0)\rangle \tag{2.5}
\end{equation*}
$$

Taking the partial time derivative, and substituting in the above identity for $|\Psi(0)\rangle$, we have:

$$
\begin{aligned}
\frac{\partial}{\partial t}|\Psi(t)\rangle & =\frac{\partial \hat{U}(t)}{\partial t}|\Psi(0)\rangle \\
& =\left\{\frac{\partial \hat{U}(t)}{\partial t} \hat{U}^{\dagger}(t)\right\}|\Psi(t)\rangle
\end{aligned}
$$

We can apply the product rule and the identity $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$ to obtain

$$
\begin{aligned}
\hat{U} \hat{U}^{\dagger} & =I \\
\frac{\partial \hat{U}}{\partial t} \hat{U}^{\dagger}+\hat{U} \frac{\partial \hat{U}^{\dagger}}{\partial t} & =0 \\
\frac{\partial \hat{U}}{\partial t} \hat{U}^{\dagger} & =-\left(\frac{\partial \hat{U}}{\partial t} \hat{U}^{\dagger}\right)^{\dagger}
\end{aligned}
$$

which is an anti-hermitian operator. We can relate it to a hermitian operator \hat{H}.

$$
\begin{equation*}
\frac{\partial \hat{U}}{\partial t} \hat{U}^{\dagger}=\frac{\hat{H}}{i \hbar} \tag{2.6}
\end{equation*}
$$

where \hat{H} is the Hamiltonian. Altogether, we end up with Schrodinger's Equation:

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle \tag{2.7}
\end{equation*}
$$

Usually we choose $\{|0\rangle,|1\rangle\}$ as the eigenstates of the Hamiltonian.

2.4 Measurements and Non-Unitary Operations

If the particle is in a state $|\Psi\rangle$, measure of the variable $\hat{\Omega}$ will yield one of the eigenvalues of Ω with probability $P(\omega)=|\langle\omega \mid \Psi\rangle|^{2}$. The state of the system will change from $|\Psi\rangle$ to $|\omega\rangle$ as a result. - Shankar
For a qubit with the measurement operator $\hat{\Omega}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ (with eigenvalues $\omega=0,1$), then $P(0)=|\alpha|^{2}$ and $P(1)=|\beta|^{2}$. The state at the end is equal to

$$
\begin{equation*}
\left|\Psi^{\text {after }}\right|=\frac{\hat{\Pi}_{0}|\Psi\rangle}{\sqrt{P(0)}} \text { or } \frac{\hat{\Pi}_{1}|\Psi\rangle}{\sqrt{P(1)}} \tag{2.8}
\end{equation*}
$$

where $\hat{\Pi}_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\hat{\Pi}_{1}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are rank-1 projectors, i.e. $\hat{\Pi}_{0}^{2}=\hat{\Pi}$.

3 Two Qubit State

Recall that a two qubit state is written as

$$
\begin{equation*}
|\Psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle . \tag{3.1}
\end{equation*}
$$

An independent or separable state can be written as a tensor product

$$
\begin{equation*}
\left|\Psi_{\text {sep }}\right\rangle=(a|0\rangle+b|1\rangle)_{A} \otimes(c|0\rangle+d|1\rangle)_{B}=a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle . \tag{3.2}
\end{equation*}
$$

Note that $\alpha \delta-\beta \gamma=a c b d-a d b c=0$. We can immediately determine if a system can be separated by computing the concurrence

$$
\begin{equation*}
C=2|\alpha \delta-\beta \gamma| . \tag{3.3}
\end{equation*}
$$

If $C \neq 0$, then the system is not separable and is known as entangled.

3.1 Schmidt Decomposition Theorem

Theorem: Any two-qubit pure state can be written as

$$
\begin{equation*}
|\Psi\rangle=\hat{U}_{A} \otimes \hat{U}_{B}\left(\lambda_{0}|00\rangle+\lambda_{1} 11\right), \tag{3.4}
\end{equation*}
$$

where λ_{0}, λ_{1} are real, positive constants known as singular values and they satisfy $\lambda_{0}^{2}+\lambda_{1}^{2}=1$. The operators \hat{U}_{A}, \hat{U}_{B} are unitaries applied separately to each qubit.

Consider the unitary operators $\hat{U}_{A}=\left(\begin{array}{cc}a & b \\ -b^{*} & a^{*}\end{array}\right)$ and $\hat{U}_{B}=\left(\begin{array}{cc}c & d \\ -d^{*} & c^{*}\end{array}\right)$. Therefore,

$$
\begin{align*}
|\Psi\rangle & =\lambda_{0}(a|0\rangle+b|1\rangle)(c|0\rangle+d|1\rangle)+\lambda_{1}\left(-b^{*}|0\rangle+a^{*}|1\rangle\right)\left(-d^{*}|0\rangle+c^{*}|1\rangle\right) \tag{3.5}\\
& =\left(\lambda_{0} a c+\lambda_{1} b^{*} d^{*}\right)|00\rangle+\left(\lambda_{0} a d-\lambda_{1} b^{*} c^{*}\right)|01\rangle+\left(\lambda_{0} b c-\lambda_{1} a^{*} d^{*}\right)|10\rangle+\left(\lambda_{0} b d+\lambda_{1} a^{*} c^{*}\right)|11\rangle . \tag{3.6}
\end{align*}
$$

This looks very messy, but we can compute the concurrence (and after a length but straightforward computations), we get

$$
\begin{equation*}
C=2 \lambda_{0} \lambda_{1} . \tag{3.7}
\end{equation*}
$$

Using $\lambda_{0}^{2}+\lambda_{1}^{2}=1$, we can obtain the quadratic equation

$$
\begin{equation*}
\lambda^{4}-\lambda^{2}+(C / 2)^{2}=0 \tag{3.8}
\end{equation*}
$$

so λ_{0}, λ_{1} are determined by C. The maximum value of C is $C_{\max }=1$, which occurs at $\lambda_{\text {crit }}=\frac{1}{\sqrt{2}}$. At $C=1$, it is known as a maximally entangled state.

This isn't justified yet, but C is the measure of entanglement for 2-qubit states.
Proof. Let us rewrite

$$
\begin{equation*}
|\Psi\rangle=\sum_{i, j=0}^{1} \chi_{i j}|i\rangle|j\rangle \tag{3.9}
\end{equation*}
$$

where $\chi_{i j}$ are elements of a 2×2 matrix $\chi=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$. Note that χ is not hermitian, but both $\hat{\chi} \hat{\chi}^{\dagger}$ and $\hat{\chi}^{\dagger} \hat{\chi}$ are hermitian and their eigenvalues are positive.

We can show they are hermitian by a direct computation. To show their eigenvalues are positive, note that $\langle\phi \mid \phi\rangle \geq 0$ for any state ϕ and we can write:

$$
\begin{equation*}
\langle\phi| \hat{\chi} \hat{\chi}^{\dagger}|\phi\rangle=\left\langle\phi^{\prime} \mid \phi^{\prime}\right\rangle \geq 0 \tag{3.10}
\end{equation*}
$$

Note that $\left|\phi^{\prime}\right\rangle$ is an eigenvector of $\hat{\chi} \hat{\chi}^{\dagger}$. Then all the eigenvalues are positive.
Consider an aribtrary matrix $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$. The determinant can be determined by $\lambda^{2}-(\operatorname{Tr}) \lambda+(\operatorname{Det})=0$. The trace of $\hat{\chi} \hat{\chi}^{\dagger}$ is 1 and the determinant is $C^{2} / 4$. This allows us to calculate λ_{0}, λ_{1}. Define

$$
\Lambda=\left(\begin{array}{cc}
\lambda_{0} & 0 \tag{3.11}\\
0 & \lambda_{1}
\end{array}\right)
$$

This allows us to write

$$
\begin{aligned}
& \hat{\chi} \hat{\chi}^{\dagger}=\hat{U} \Lambda^{2} \hat{U}^{\dagger} \\
& \hat{\chi}^{\dagger} \hat{\chi}=\hat{V} \Lambda^{2} \hat{V}^{\dagger} .
\end{aligned}
$$

Combining the two together, we end up with the singular value decomposition

$$
\begin{equation*}
\hat{\chi}=\hat{U} \hat{\Lambda} \hat{V}^{\dagger} . \tag{3.12}
\end{equation*}
$$

We can write an expression for each entry:

$$
\begin{equation*}
\chi_{i j}=\sum_{p=0}^{1} U_{i p} \lambda_{p} V_{j p}^{*}, \tag{3.13}
\end{equation*}
$$

which directly leads to the desired relationship.

3.2 Operations on Two Qubits

There are various ways to perform operations. Here are a few ways:

1. Local Unitaries apply to only one qubit. Namely,

$$
\begin{equation*}
\left|\Psi^{\prime}\right\rangle=(\hat{U} \otimes \hat{I})|\Psi\rangle \tag{3.14}
\end{equation*}
$$

If $\hat{U}=\left(\begin{array}{cc}a & b \\ -b^{*} & a^{*}\end{array}\right)$, then this operation can be represented by

$$
\left(\begin{array}{c}
\alpha^{\prime} \tag{3.15}\\
\beta^{\prime} \\
\gamma^{\prime} \\
\delta^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & a & 0 & b \\
-b^{*} & 0 & a^{*} & 0 \\
0 & -b^{*} & 0 & a^{*}
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right)=\left(\begin{array}{cc}
a \hat{I} & b \hat{I} \\
-b^{*} \hat{I} & a^{*} \hat{I}
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right)=(\hat{U} \otimes \hat{I})\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right) .
$$

A similar relationship can be found for operations in the form $\hat{I} \otimes \hat{V}$.
It is important to recognize that local operations can never increase entanglement. So how can we increase entanglement? We start with two qubits in $|0\rangle|0\rangle$, and apply a unitary $\hat{U}_{1}=\lambda_{0} \hat{I}-i \lambda_{1} \hat{Y}$ to qubit 1 ,

$$
\begin{equation*}
|0\rangle \rightarrow \lambda_{0}|0\rangle+\lambda_{1}|1\rangle \tag{3.16}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left|\Psi_{1}\right\rangle=\lambda_{0}|00\rangle+\lambda_{1}|11\rangle . \tag{3.17}
\end{equation*}
$$

We then apply a CNOT gate by applying a bit flip to qubit 2 if qubit 1 is in $|1\rangle$ and do nothing if qubit 1 is in $|0\rangle$. However, we have to do this unitarily and reversibly. We can write:

$$
\begin{equation*}
\mathrm{CNOT}=\hat{\Pi}_{0} \otimes \hat{I}+\hat{\Pi}_{1} \otimes \hat{X} \tag{3.18}
\end{equation*}
$$

so

$$
\begin{equation*}
\left|\Psi_{2}\right\rangle=\operatorname{CNOT}\left(\Psi_{1}\right)=\lambda_{0}|00\rangle+\lambda_{1}|11\rangle . \tag{3.19}
\end{equation*}
$$

We then apply local unitaries \hat{U}_{a} and \hat{U}_{b}, so

$$
\begin{equation*}
|\Psi\rangle_{3}=\left(\hat{U}_{a} \otimes \hat{U}_{b}\right)\left(\lambda_{0}|00\rangle+\lambda_{1}|11\rangle\right) . \tag{3.20}
\end{equation*}
$$

4 Universal Two-Qubit Gates

A universal 2-qubit gate (such as the CNOT gate), along with local unitary operators, can be used to create any two-qubit system. A CNOT gate can be represented as
$|a\rangle$
$|b\rangle$

$|a\rangle$
$|a\rangle \otimes|b\rangle$

To test if other gates are universal, we can see if it can be transformed into a CNOT gate. For example, the control-Z gate,

is also universal. This is equivalent since $H Z H=X$. This is represented by the control-Z matrix, given by

$$
\hat{U}_{C Z}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{4.1}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

The SWAP gate is given by

$$
S W A P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{4.2}\\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and reverses the roles of the two qubits, which is equivalent to the circuit

Note that the SWAP gate is not universal. However, the ROOT-SWAP gate is universal and is given by:

$$
\sqrt{S W A P}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{4.3}\\
0 & (1+i) / 2 & (1-i) / 2 & 0 \\
0 & (i-1) / 2 & (1+i) / 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

We can use the SWAP gate along with local unitaries to create control-Z via the following:

where $V=\sqrt{Z}=(\hat{I}-i \hat{Z}) / \sqrt{2}$, and can be checked by matrix multiplication.

4.1 Maximally Entangled States

Recall that a state is maximally entangled if and only if $C=2|\alpha \delta-\beta \gamma|=1$. Let us see how we can construct such a state. Consider the circuit:

So, the qubits gets transformed to:

$$
\begin{equation*}
|00\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \rightarrow \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|\Phi_{+}\right\rangle, \tag{4.4}
\end{equation*}
$$

so the concurrence is 1 . It turns out we can construct more maximally entangled states. Namely,

$$
\begin{equation*}
\left|\beta_{k}\right\rangle=i\left(\hat{I} \otimes \hat{\sigma}_{k}\right)|\beta\rangle \tag{4.5}
\end{equation*}
$$

