PHY365: Quantum Information

QiLin Xue

Fall 2021

Contents

1	Overview of Quantum Computing	:
	1.1 Quantum Coins	2
	1.2 Building a Better Computer	1
	1.2.1 Quantum Parallelism	:
	1.3 Quantum Mechanics of Quantum Computers	
2	Unitary Operators	
	2.1 SU(2)	
	2.2 Basis Change	
	2.3 Time Evolution	
	2.4 Measurements and Non-Unitary Operations	
3	Two Qubit State	
	3.1 Schmidt Decomposition Theorem	
	3.2 Operations on Two Qubits	
4	Universal Two-Qubit Gates	
	4.1 Maximally Entangled States	

1 Overview of Quantum Computing

1.1 Quantum Coins

Consider a quantum coin that can be in a superposition of heads and tails. We can write its state as a vector:

$$|\Psi\rangle = \alpha |H\rangle + \beta |T\rangle \tag{1.1}$$

which lives in the Hilbert Space. Inner products of these vectors can be written as

$$\langle \Psi_1 | \Psi_2 \rangle.$$
 (1.2)

Born's Rule tells us we can compute the probability of tails to be $|\beta|^2$ and the probability of heads is $|\alpha|^2$. When there are two quantum coins, there can be four combinations of heads and tails, written as:

$$|\Psi\rangle = \alpha |HH\rangle + \beta |HT\rangle + \gamma TH\rangle + \delta |TT\rangle.$$
(1.3)

In quantum mechanics, we can construct the following state:

$$|\Psi\rangle = \frac{1}{\sqrt{2}}|HH\rangle + \frac{1}{\sqrt{2}}|TT\rangle, \qquad (1.4)$$

which represents **entanglement**. If we measure the first coin, we can instantly know the outcome of the second coin, even if they are lightyears apart.

1.2 Building a Better Computer

How might we use quantum coins to help us build a "better" computer? Before we begin to understand and answer this question, let us understand some key concepts.

First, we can measure **information** as the number of bits (binary digits) that are needed to specify a message. Each bit in a computer requires a physical system that has two possible configurations.

- In semiconductor circuits, we use voltage.
- Magnetization is sometimes also used (i.e. in hard drives).
- Pits in optical storage.
- Paper tape with holes in it

Now let's extend the idea to quantum bits, i.e. **qubits**. Let us use $|0\rangle$ and $|1\rangle$ to represent the two possible states of a quantum coin, and we can write a qubit as

$$|\Psi_1\rangle = \alpha|0\rangle + \beta|1\rangle,\tag{1.5}$$

which isn't necessarily interesting. If we have two qubits, we can write the state as

$$|\Psi_2\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle, \tag{1.6}$$

where the following notation are equivalent:

$$|00\rangle = |0\rangle|0\rangle = |0\rangle \otimes |0\rangle \tag{1.7}$$

where \otimes is the **tensor product** of two vectors. To make it easier to write, we can also write it as:

$$|\Psi_2\rangle = \alpha|0_2\rangle + \beta|1_2\rangle + \gamma|2_2\rangle + \delta|3_2\rangle.$$
(1.8)

For three qubits, we have

$$|\Psi_3\rangle = \alpha|000\rangle + \beta|001\rangle + \gamma|010\rangle + \delta|011\rangle + \epsilon|100\rangle + \zeta|101\rangle + \eta|110\rangle + \theta|111\rangle.$$
(1.9)

Therefore, N qubits will have 2^N possible states. This suggests that quantum memory can get big, fast.

1.2.1 Quantum Parallelism

However, this is not the only difference. Each qubit operation, i.e. $|0\rangle \leftrightarrow |1\rangle$ affect *all* the probability amplitudes. This also suggests that quantum computers can be extremely efficient.

However, when we make measurements, N qubits only leads to N bits of information. Therefore, even though it is very efficient and quick, there is only a small amount of output.

Example 1: Consider $f : \mathbb{Z}^+ \to \mathbb{R}$ a periodic function that maps $x \in [0, 2^L - 1]$ (i.e. takes in an L bit integer). There is some X such that f(x + X) = f(x) and we wish to find X.

In a classical computer, we would evaluate f(x) for multiple values of x. In general, we would expect around 2^{L-1} calls in the routine.

However, in a quantum computer, we need L qubits to store values of x (i.e. in the. argument register) and L qubits to store the result of f(x) in the function register. Through a series of bit flips, we can create the state

$$|x\rangle|0\cdots0\rangle \tag{1.10}$$

where the first braket is the input and the second braket is the function register. Then suppose we have a quantum operation \hat{U}_f defined such that

$$\hat{U}_f|x\rangle|0\rangle = |x\rangle|f(x)\rangle. \tag{1.11}$$

But if we prepare the initial state of the register not in x, but in a superposition (achieved via a **Hadamard gate**), then we can write:

$$\hat{U}_f \frac{1}{N} \left(\sum_{x=0}^{2^k - 1} |x\rangle \right) |0\rangle = \frac{1}{N} \underbrace{\sum_{x=0}^{2^k - 1} |x\rangle |f(x)\rangle}_{\text{massively entangled state}} .$$
(1.12)

The difference is that all values of f(x) are generated by a single call on \hat{U}_f . If we now apply something called the **Quantum Fourier Transform**

$$\hat{U}_{QFT}\sum_{x}|x\rangle|f(x)\rangle = \frac{1}{N}\sum_{x}|x\rangle|\tilde{f}(x)\rangle, \qquad (1.13)$$

where \tilde{f} is the fourier transform, which you will get a discrete graph of vertical bars separated a distance by $\frac{n}{X}$. If we do this a few times, we can extract what X is.

Quantum computers allow us in principle to evaluate periods very efficient. This is a very important problem in **number theory** since period finding helps a great deal in factoring.

Consider coprime n, a and define

$$f(x) = a^x \mod n. \tag{1.14}$$

This is a periodic function with period r. If we can figure out what r is, then

$$\gcd(a^{r/2} \pm 1, n)$$
 (1.15)

is a factor of n. This is known as **Shor's Algorithm**.

1.3 Quantum Mechanics of Quantum Computers

Suppose there are three qubits. Recall that there are $2^3 = 8$ possible configurations. These form a basis for a 8-dimensional vector space. These basis states are known as a **computational basis**.

For a single basis $|\Psi\rangle = \alpha |0\rangle + \beta 1 \rangle$, where α, β are complex probability amplitudes, then we have

$$|\alpha|^2 + |\beta|^2 = 1 \iff (\alpha^*, \beta^*) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = 1.$$
(1.16)

Now suppose we apply a transformation (i.e. operators and gates):

$$\begin{split} |\Psi\rangle \mapsto |\Psi'\rangle \\ \alpha \mapsto \alpha' \\ \beta \mapsto \beta'. \end{split}$$

We can assume linearity (which has been experimentally validated), and therefore

$$\alpha' = u_{00}\alpha + u_{01}\beta$$
$$\beta' = u_{10}\alpha + u_{11}\beta$$

which can be written as a matrix

$$\begin{pmatrix} \alpha'\\ \beta' \end{pmatrix} = \begin{pmatrix} u_{00} & u_{01}\\ u_{10} & u_{11} \end{pmatrix} \begin{pmatrix} \alpha\\ \beta \end{pmatrix} \iff |\Psi'\rangle = \hat{U}|\Psi\rangle.$$
(1.17)

And the complex conjugates are

$$(\alpha^{\prime*}, \beta^{\prime*}) = (\alpha^*, \beta^*) \begin{pmatrix} u_{00}^* & u_{10}^* \\ u_{01}^* & u_{11}^* \end{pmatrix} \iff \langle \Psi^{\prime} | = \langle \Psi | \hat{U}^{\dagger}.$$
(1.18)

Here are some properties of the complex conjugate:

- $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$
- $\langle \psi' | \psi' \rangle = \langle \psi | \hat{U}^{\dagger} \hat{U} | \Psi \rangle = 1 \iff \hat{U}$ is unitary, which is true for all valid quantum operations on a closed system.

Let's look at some example gates:

• Bit-flip gate:

$$\hat{X} = \begin{pmatrix} 0 & 1\\ 1 & 0. \end{pmatrix} \tag{1.19}$$

along with the rest of the Pauli matrices:

$$\hat{Y} = \begin{pmatrix} 0 & -i \\ i & 0. \end{pmatrix} \tag{1.20}$$

$$\hat{Z} = \begin{pmatrix} 1 & 0\\ 0 & -1. \end{pmatrix} \tag{1.21}$$

$$\hat{I} = \begin{pmatrix} 1 & 0\\ 0 & 1. \end{pmatrix}. \tag{1.22}$$

• Phase-flip gate: \hat{Z} . Note that the overall **phase**, or "global" phase is irrelevant, since the norm of the probabilities stay the same.

2 Unitary Operators

2.1 SU(2)

An arbitrary 2×2 unitary is a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $|ad - bc|^2 = 1$. In general, $ad - bc = e^{i\phi} \neq 1$. However in quantum computing, we don't typically care about the **phase** of our qubits, so without loss of generality, we can assume that ad - bc = 1. These are known as special unitary matrices with dimension 2, or SU(2). We can therefore write it as

$$\hat{U} = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$$

Any unitary matrix can be written as a linear combination of $\hat{I}, \hat{X}, \hat{Y}, \hat{Z}$. Particularly,

$$\hat{U} = \begin{pmatrix} a_1 + ia_2 & b_1 + ib_2 \\ -b_1 + ib_2 & a_1 - ia_2 \end{pmatrix} = a_1 \hat{I} + ib_2 \hat{X} + ib_1 \hat{Y} + ia_2 \hat{Z}.$$
(2.1)

Note that

$$1 = a_1^2 + a_2^2 + b_1^2 + b_2^2 \tag{2.2}$$

$$a_1 = \cos\theta \tag{2.3}$$

$$\{b_2, b_1, a_2\} = \sin \theta \{n_x, n_y, n_z\}.$$
(2.4)

We can thus express $\hat{U} = \cos \theta \hat{I} + i \sin \theta \boldsymbol{n} \cdot \boldsymbol{\sigma}$

2.2 Basis Change

We can introduce new bases use unitaries. Namely, $\hat{U} |0\rangle = |u\rangle$, $\hat{U} |1\rangle = |u_{\perp}\rangle$ are new basis vectors. These two will still be orthogonal.

2.3 Time Evolution

Suppose we have an evolving unitary

$$|\Psi(t)\rangle = \hat{U}(t) |\Psi(0)\rangle.$$
(2.5)

Taking the partial time derivative, and substituting in the above identity for $|\Psi(0)
angle$, we have:

$$\begin{aligned} \frac{\partial}{\partial t} |\Psi(t)\rangle &= \frac{\partial \hat{U}(t)}{\partial t} |\Psi(0)\rangle \\ &= \left\{ \frac{\partial \hat{U}(t)}{\partial t} \hat{U}^{\dagger}(t) \right\} |\Psi(t)\rangle \end{aligned}$$

We can apply the product rule and the identity $(AB)^{\dagger}=B^{\dagger}A^{\dagger}$ to obtain

$$\hat{U}\hat{U}^{\dagger} = I$$

$$\frac{\partial \hat{U}}{\partial t}\hat{U}^{\dagger} + \hat{U}\frac{\partial \hat{U}^{\dagger}}{\partial t} = 0$$

$$\frac{\partial \hat{U}}{\partial t}\hat{U}^{\dagger} = -\left(\frac{\partial \hat{U}}{\partial t}\hat{U}^{\dagger}\right)^{\dagger},$$

which is an **anti-hermitian operator**. We can relate it to a hermitian operator \hat{H} .

$$\frac{\partial \hat{U}}{\partial t}\hat{U}^{\dagger} = \frac{\hat{H}}{i\hbar},\tag{2.6}$$

where \hat{H} is the Hamiltonian. Altogether, we end up with Schrodinger's Equation:

$$i\hbar\frac{\partial}{\partial t}|\Psi(t)\rangle = \hat{H}|\Psi(t)\rangle.$$
 (2.7)

Usually we choose $\{|0\rangle, |1\rangle\}$ as the eigenstates of the Hamiltonian.

2.4 Measurements and Non-Unitary Operations

If the particle is in a state $|\Psi\rangle$, measure of the variable $\hat{\Omega}$ will yield one of the eigenvalues of Ω with probability $P(\omega) = |\langle \omega | \Psi \rangle|^2$. The state of the system will change from $|\Psi\rangle$ to $|\omega\rangle$ as a result. - Shankar

For a qubit with the measurement operator $\hat{\Omega} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ (with eigenvalues $\omega = 0, 1$), then $P(0) = |\alpha|^2$ and $P(1) = |\beta|^2$. The state at the end is equal to

$$|\Psi^{\text{after}}| = \frac{\hat{\Pi}_0 |\Psi\rangle}{\sqrt{P(0)}} \text{ or } \frac{\hat{\Pi}_1 |\Psi\rangle}{\sqrt{P(1)}}$$
(2.8)

where $\hat{\Pi}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\hat{\Pi}_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ are rank-1 projectors, i.e. $\hat{\Pi}_0^2 = \hat{\Pi}$.

3 Two Qubit State

Recall that a two qubit state is written as

$$|\Psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle.$$
(3.1)

An independent or separable state can be written as a tensor product

$$\Psi_{\mathsf{sep}}\rangle = (a|0\rangle + b|1\rangle)_A \otimes (c|0\rangle + d|1\rangle)_B = ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle.$$
(3.2)

Note that $\alpha\delta - \beta\gamma = acbd - adbc = 0$. We can immediately determine if a system can be separated by computing the concurrence

$$C = 2|\alpha\delta - \beta\gamma|. \tag{3.3}$$

If $C \neq 0$, then the system is not separable and is known as **entangled**.

3.1 Schmidt Decomposition Theorem

Theorem: Any two-qubit pure state can be written as

$$|\Psi\rangle = \hat{U}_A \otimes \hat{U}_B \left(\lambda_0 \left| 00 \right\rangle + \lambda_1 11\right), \tag{3.4}$$

where λ_0, λ_1 are real, positive constants known as singular values and they satisfy $\lambda_0^2 + \lambda_1^2 = 1$. The operators \hat{U}_A, \hat{U}_B are unitaries applied separately to each qubit.

Consider the unitary operators
$$\hat{U}_A = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$$
 and $\hat{U}_B = \begin{pmatrix} c & d \\ -d^* & c^* \end{pmatrix}$. Therefore,

$$|\Psi\rangle = \lambda_0 \left(a \left| 0 \right\rangle + b \left| 1 \right\rangle\right) \left(c \left| 0 \right\rangle + d \left| 1 \right\rangle\right) + \lambda_1 \left(-b^* \left| 0 \right\rangle + a^* \left| 1 \right\rangle\right) \left(-d^* \left| 0 \right\rangle + c^* \left| 1 \right\rangle\right)$$

$$= \left(\lambda_0 a c + \lambda_1 b^* d^*\right) \left| 00 \right\rangle + \left(\lambda_0 a d - \lambda_1 b^* c^*\right) \left| 01 \right\rangle + \left(\lambda_0 b c - \lambda_1 a^* d^*\right) \left| 10 \right\rangle + \left(\lambda_0 b d + \lambda_1 a^* c^*\right) \left| 11 \right\rangle.$$
(3.6)

This looks very messy, but we can compute the concurrence (and after a length but straightforward computations), we get

$$C = 2\lambda_0 \lambda_1. \tag{3.7}$$

Using $\lambda_0^2 + \lambda_1^2 = 1$, we can obtain the quadratic equation

$$\lambda^4 - \lambda^2 + (C/2)^2 = 0, \tag{3.8}$$

so λ_0, λ_1 are determined by C. The maximum value of C is $C_{max} = 1$, which occurs at $\lambda_{crit} = \frac{1}{\sqrt{2}}$. At C = 1, it is known as a maximally entangled state.

This isn't justified yet, but C is the measure of entanglement for 2-qubit states.

Proof. Let us rewrite

$$|\Psi\rangle = \sum_{i,j=0}^{1} \chi_{ij} |i\rangle |j\rangle$$
(3.9)

where χ_{ij} are elements of a 2×2 matrix $\chi = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. Note that χ is not hermitian, but both $\hat{\chi}\hat{\chi}^{\dagger}$ and $\hat{\chi}^{\dagger}\hat{\chi}$ are hermitian and their eigenvalues are positive.

We can show they are hermitian by a direct computation. To show their eigenvalues are positive, note that $\langle \phi | \phi \rangle \ge 0$ for any state ϕ and we can write:

$$\langle \phi | \hat{\chi} \hat{\chi}^{\dagger} | \phi \rangle = \langle \phi' | \phi' \rangle \ge 0.$$
(3.10)

Note that $|\phi'\rangle$ is an eigenvector of $\hat{\chi}\hat{\chi}^{\dagger}$. Then all the eigenvalues are positive.

Consider an aribtrary matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$. The determinant can be determined by $\lambda^2 - (\text{Tr})\lambda + (\text{Det}) = 0$. The trace of $\hat{\chi}\hat{\chi}^{\dagger}$ is 1 and the determinant is $C^2/4$. This allows us to calculate λ_0, λ_1 . Define

$$\Lambda = \begin{pmatrix} \lambda_0 & 0\\ 0 & \lambda_1 \end{pmatrix}. \tag{3.11}$$

This allows us to write

$$\hat{\chi}\hat{\chi}^{\dagger} = \hat{U}\Lambda^{2}\hat{U}^{\dagger}$$
$$\hat{\chi}^{\dagger}\hat{\chi} = \hat{V}\Lambda^{2}\hat{V}^{\dagger}.$$

Combining the two together, we end up with the singular value decomposition

$$\hat{\chi} = \hat{U}\hat{\Lambda}\hat{V}^{\dagger}.$$
(3.12)

We can write an expression for each entry:

$$\chi_{ij} = \sum_{p=0}^{1} U_{ip} \lambda_p V_{jp}^*,$$
(3.13)

which directly leads to the desired relationship.

3.2 Operations on Two Qubits

There are various ways to perform operations. Here are a few ways:

1. Local Unitaries apply to only one qubit. Namely,

$$|\Psi'\rangle = (\hat{U} \otimes \hat{I}) |\Psi\rangle.$$
(3.14)

If $\hat{U} = egin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$, then this operation can be represented by

$$\begin{pmatrix} \alpha'\\\beta'\\\gamma'\\\delta' \end{pmatrix} = \begin{pmatrix} a & 0 & b & 0\\ 0 & a & 0 & b\\ -b^* & 0 & a^* & 0\\ 0 & -b^* & 0 & a^* \end{pmatrix} \begin{pmatrix} \alpha\\\beta\\\gamma\\\delta \end{pmatrix} = \begin{pmatrix} a\hat{I} & b\hat{I}\\ -b^*\hat{I} & a^*\hat{I} \end{pmatrix} \begin{pmatrix} \alpha\\\beta\\\gamma\\\delta \end{pmatrix} = (\hat{U} \otimes \hat{I}) \begin{pmatrix} \alpha\\\beta\\\gamma\\\delta \end{pmatrix}.$$
 (3.15)

A similar relationship can be found for operations in the form $\hat{I} \otimes \hat{V}$.

It is important to recognize that local operations can never increase entanglement. So how can we increase entanglement? We start with two qubits in $|0\rangle |0\rangle$, and apply a unitary $\hat{U}_1 = \lambda_0 \hat{I} - i\lambda_1 \hat{Y}$ to qubit 1,

$$|0\rangle \to \lambda_0 |0\rangle + \lambda_1 |1\rangle. \tag{3.16}$$

such that

$$|\Psi_1\rangle = \lambda_0 |00\rangle + \lambda_1 |11\rangle. \tag{3.17}$$

We then apply a **CNOT** gate by applying a bit flip to qubit 2 if qubit 1 is in $|1\rangle$ and do nothing if qubit 1 is in $|0\rangle$. However, we have to do this unitarily and reversibly. We can write:

$$\mathsf{CNOT} = \hat{\Pi}_0 \otimes \hat{I} + \hat{\Pi}_1 \otimes \hat{X}. \tag{3.18}$$

so

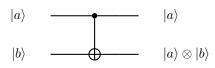
$$|\Psi_2\rangle = \mathsf{CNOT}(\Psi_1) = \lambda_0 |00\rangle + \lambda_1 |11\rangle.$$
(3.19)

We then apply local unitaries \hat{U}_a and \hat{U}_b , so

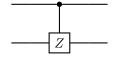
$$|\Psi\rangle_3 = (\hat{U}_a \otimes \hat{U}_b)(\lambda_0 |00\rangle + \lambda_1 |11\rangle). \tag{3.20}$$

4 Universal Two-Qubit Gates

A **universal 2-qubit gate** (such as the CNOT gate), along with local unitary operators, can be used to create any two-qubit system. A CNOT gate can be represented as



To test if other gates are universal, we can see if it can be transformed into a CNOT gate. For example, the control-Z gate,



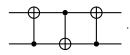
is also universal. This is equivalent since HZH = X. This is represented by the control-Z matrix, given by

$$\hat{U}_{CZ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$
(4.1)

The **SWAP** gate is given by

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(4.2)

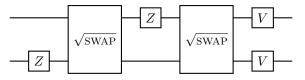
and reverses the roles of the two qubits, which is equivalent to the circuit



Note that the SWAP gate is not universal. However, the **ROOT-SWAP** gate is universal and is given by:

$$\sqrt{SWAP} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & (1+i)/2 & (1-i)/2 & 0\\ 0 & (i-1)/2 & (1+i)/2 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
(4.3)

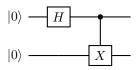
We can use the SWAP gate along with local unitaries to create control-Z via the following:



where $V = \sqrt{Z} = (\hat{I} - i\hat{Z})/\sqrt{2}$, and can be checked by matrix multiplication.

4.1 Maximally Entangled States

Recall that a state is maximally entangled if and only if $C = 2|\alpha \delta - \beta \gamma| = 1$. Let us see how we can construct such a state. Consider the circuit:



So, the qubits gets transformed to:

$$|00\rangle \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = |\Phi_+\rangle, \qquad (4.4)$$

so the concurrence is 1. It turns out we can construct more maximally entangled states. Namely,

$$|\beta_k\rangle = i(\hat{I} \otimes \hat{\sigma}_k) |\beta\rangle.$$
(4.5)