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 I. INTRODUCTION 

The purpose of the lab is to apply fluid 
mechanics to model fluid flow through 
channels of varying widths and shape. In 
particular, we look at the relationships 
between flow speed and pressure. In 
incompressible flow, along any streamline, 
the quantity 

 = constant (1) 

is conserved [1], where ρ is the density, v is 
the speed, g is the gravitational acceleration, 
z is the height (relative to an arbitrary point), 
and P is the static pressure at a given point. 
In a typical microfluidics experiment, there is 
a syringe filled with water connected to a 
thin tube that exits a distance h below the 
syringe and both the top of the syringe and 
the exit is exposed to atmospheric pressure. 
Suppose there is a streamline that starts at 
the surface and ends at the exit, and compare 
the above quantity at both the starting and 
ending points. Let v1 be the speed at which 
the surface is lowering. If we assume  is 
small, then we arrive at Toricelli’s Law [1]: 

 vexit = p2gh (2) 

At steady flow, the amount of fluid that flows 
past a certain cross section should remain 
constant with respect to time. From 
conservation of mass, we can show that 

 Integral v1 dA1 =integral v2 dA2 (3) 

Where Ai and vi refer to the cross sectional 
area and speed respectively at some point i. 
If we assume that the flow is constant in any 
given cross section, this reduces to 

 A1v1 = A2v2. (4) 

However, Bernoulli’s equation may not apply 
for viscous and turbulent flow. Theoretical 
and computational methods to model 
turbulent and viscous flow are often complex, 
so we are also interested in how much the 
ideal laminar flow approximation applies 

 II. METHOD 

The procedure from the laboratory manual 
was followed [2], and data analysis was done 
using the software ImageJ [3]. Using the Find 
Edges feature, it allowed the streaks to be 
more defined, which was especially helpful 
when dealing with overlap, as shown in 
figure 1. We selected the beginning and ends 
of all the relevant streaks, and the program 
was able to output a table of x and y values 
for us to analyze. 

The default unit ImageJ uses is a 300 pixel : 1 
unit, and the uncertainty in position when 
following the above method to measure the 
streak is 0.1 unit = 30 pixels. We obtained 
this value by selecting the start and end point 
of a given streak numerous times and 
recording the standard deviation in length. 
This uncertainty is caused by blurring 
towards the end of each streak. This should 
be independent of how long the streak is, so 
unless otherwise stated, this is the 
measurement uncertainty we will be using. 
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The length was converted to the actual length 
by using the scale that appears in each 
question. The uncertainty of the length of the 

given scale is 0.02 units, calculated in the 
same way as above. The reason this is 
smaller is because the ends of the scale is 
more well defined. 

 III. DISCUSSION 

We analyzed the flow of fluid for five cases to 
observe three overall phenomena: flow in a 
straight channel, flow through a bend, and 
flow through varying cross sections. We will 
discuss how well our model holds in each of 
the three cases. 

A. Flow Through A Straight Channel 

In this scenario, fluid flow moves through a 
channel of diameter 130 ± 7µm. Figure 2 
shows the relationship between the speed of 
the streak and its distance from one of the 
edges. 

We chose a quadratic model with one 
parameter as we are using the Hagen-
Poiseuille equation to model viscous flow, 
which tells us the speed distribution is given 
by[4]: 

 v(r) = −α(R2 − r2) (5) 

where α is some constant that depends on 
the geometry of the pipe and the properties 
of the fluid. Note that there is only one 

parameter α, so this prevents overfitting. 
Although the model is not perfect, with R2 = 
0.535, it does show the presence of a 
nonlinear effect and the fact that the 
maximum speed occurs near the middle, 
which is what we expected. 

Visually, we observe the flow to be laminar as 
the paths that the beads take are smooth 
streamlines. We have also seen that the 
speed distribution roughly follows a 
quadratic, which is what the Hagen- 
Poiseuille relationship predicts. 

We are also interested in how various factors 
such as the height of the syringe or shape of 
the tube effects the speed. However, this is a 
complex task as the speed greatly varies even 
within a single cross section! Therefore, for 
simplicity, we will only focus on the speed in 
the center, unless otherwise indicated so the 
speeds in table I are recorded at the center of 
the tube only. We see that as the height 

Height (cm) Speed (mm/s) 
10 ± 3 3.4 ± 0.5 
15 ± 3 4 ± 1 
20 ± 3 4.9 ± 7 

TABLE I: Average speed for the straight tube 
case when changing the height of the 

gravity head. Measurements were averaged 

 

FIG. 1: An example of an ImageJ output. The red lines show the streaks and the yellow 
crosses show user markings. Note that the edges are outlined. 
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and the standard deviation was taken to be 
the uncertainty. increases, the speed also 
increases. Since we only have three data 

points, we cannot draw a conclusion on how 
the height of the gravity head affects the 

speed of the fluid. This is because an 
increase in height applies a greater 

pressure. Put it more strictly, consider two 
points on a streamline: one from the surface 
of the water at the syringe (point 1) and the 
other at the point of interest in the straight 

channel (point 2). If point 1 is a height z 
above the tube, then from Bernoulli’s 

Principle: 

  (6) 
where we have assumed that since the area 
of the tube is much greater than the area of 
the tube, the speed at which the water level 
drops is negligible. We can expect that an 
increase in the height z will cause an increase 
in the speed v. 

Also note that changing the volume has the 
same effect as changing the height. For 
example, if a volume of ∆V is added to a 

syringe of cross sectional area A, it is 
essentially equivalent to raising the surface 
of the water by a height (∆V )/A. 

 B. Flow Through a Bend 

We also considered two bends: one is sharp 
and forms an “L” shape while the other is 
smooth and forms an “S” shape. The cross 
sectional area of both these tubes remain 
constant, so we should expect the speeds to 
remain constant. Figure 3 shows how the 
streak lines look in these two cases. Table 
II and Notice that in both the smooth and 
Location Speed in S curve 

(mm/s) 
Speed in L curve 
(mm/s) 

Start 1.1 ± 0.2 1.3 ± 0.1 
Middle 1.0 ± 0.1 1.3 ± 0.1 

End 1.1 ± 0.1 1.2 ± 0.1 
TABLE II: Average speed for the straight 

tube case when changing the height of the 
gravity head. Measurements were averaged 
and the standard deviation was taken to be 

the uncertainty. 

 

FIG. 2: The plot of the collected data along with a line of best fit. The speed clearly drops off 
towards the edges but near the middle there is a range of speed distributions. 
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sharp bends, the speeds before, during, and 
after the bend all agree with each other. This 
is both expected, since for constant areas, the 
continuity equation becomes v1 = v2, yet it is 
still interesting, since we looked at the speed 
near the center of the pipe only, and ignored 
the flow near the edges. This further 

supports the idea that flow is laminar. This is 
because in laminar flow, given constant cross 
section, all particles should travel parallel to 
the axis of the pipe. 

Another interesting phenomena is the 
velocity profile during the bend. The location 
at which maximal speed occurs is no longer 
in the center, but skewed towards the 
outside edge. 

First, we can expect the fluid to go around the 
curve in roughly the same time. Since the 
fluid that travels near the outside edge needs 
to travel a further distance, it travels at a 
faster speed. Note that this isn’t exactly right, 
as this is only true if the flow is classified as 
potential flow, i.e. ∇×v = 0, which isn’t 
necssarily true, even for laminar flow. 
However, we should still expect there to be 
some speed increase. 

We can further back this up with our lived 
experience in everyday lives. In curved rivers, 
there is often more erosion occurring on the 

outside edge of a bend since the water is 
moving faster. As a result, the fact that 
maximum speed occurs near the edge in our 
microfluidics experiment should not be a 
surprise. 

However, since the fluid still has some 

nonzero viscosity, it is important to note that 
the maximum speed does not occur exactly at 
the edge. There are two competing effects: as 
we move closer to the outside edge, the faster 
the fluid moves due to the roughly equal 
transit time approach, but it also experiences 
stronger viscous forces. 

The point at which these two competing 
interactions balances out is where the 
maximum speed occurs, and interestingly, 
this location is different for the L and S 
shaped curves. For the S shaped curve, this 
point occurs extremely close the the edge 
while for the L shaped curve, this point 
occurs relatively far from the edge. In fact, 
there is a portion of the fluid near the corner 
of the L shaped curve that appears almost 
stationary. We suspect that there are 
turbulent effects here, which is likely caused 
by water that comes from the top channel 
hitting the leftmost wall, which exerts a force 
on the fluid element. This force has no 
component perpendicular to the flow, so the 
fluid gets pushed back to the right, and 

 

FIG. 3: Photos of both the L shaped bend (above) and the S shaped bend (below) while 
the fluid is moving through. The flow is moving from right to left. Paths are drawn in 

white. 
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creates a source for turbulence. To be clear, 
the motion of the beads are drawn in figure 3. 

C. Effects of Changing Channel Width 

When we widen a channel, mass 
conservation Av = constant should still hold. 
In this section, we look at two methods of 
widening the channel similar to how we 
examined bends: rapidly and gently. These 
two channels are shown in figure 4 The 
relationship between area and flow speed in 
the gradual case is graphed in figure 5. It is 
expected that as the area increases, the speed 
decreases. However, it does not appear that 
the relationship  holds too well, where 
A is the cross sectional area and α is some 
constant. The reason is likely because we 
collected data only near the center. 

In the previous section, we saw that A1v1 = 
A2v2 held if we picked speed in the center 
since the cross sections remained constant. 
However, as the area increases, streamlines 
are no longer parallel to each other and this 
graph shows that the same assumption may 
no longer hold. 

The case where the opening suddenly opens 
is interesting since it is broken up into three 
regions. The first region is the incoming fluid 
from the right in a constant width tube. The 
second region is in the middle where near the 
bottom, we have a gradual transition (and 
thus we expect behaviour similar to the 
gradual case above). Near the top, we have a 
sudden transition. In this region, and 
especially near the corner, we can see 
evidence of some turbulent flow. However in 
the gradual transition, we did not see any 

clear indicators of turbulent flow: only 
laminar viscous flow. 

We can compare the speed of the fluid in both 
the inlet and outlet channels in table III. Note 
that our expected values were very generally 
inconsistent with the expected values. 
Although the uncertainties do overlap, the 
model is not as accurate because we are only 
looking at one portion of the tube, which is 
the center. A more formal approach would be 
to compute 

Z 

v dA (7) 

perhaps by using a symmetry approach. We 
did not find any significant discussion to be 
made when changing the level of the grav- 
Location Speed - 

Gradual 
(mm/s) 

Speed 
Abrupt 
(mm/s) 

- 

Inlet 2.2 ± 0.5 ± 
0.5 

4 ± 1  

Outlet 0.5 ± 0.2 1.1 ± 0.3  

Outlet 
(Expected) 

0.2 ± 0.3 0.5 ± 0.3  

TABLE III: Summary of measured and 
expected speeds of both the gradual and 

abrupt changes in diameter. 

ity head. Increasing the volume in the syringe 
is equivalent to increasing the height of the 
syringe, which has the same effect as in the 
previous section: the speed of the water 
increases. Again, since we were only able to 
perform the experiment on a small set of 
heights, any sort of modelling beyond this 
simple statement would lead to overfitting. 
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 IV. CONCLUSION 

In conclusion, we have demonstrated 
introductory fluid mechanics concepts using 
microfluidics and found that in most cases, 
we observed laminar flow, and thus 
Bernoulli’s principle applied. Turbulent flow 
was mostly observed when there was an 
abrupt transition such as a sharp corner. 
Mass conservation 

 A1v1 = A2v2 (8) 

was also demonstrated for some cases, but 
we found that it was difficult to demonstrate 
in the general case since the velocity profile 

is not uniform, especially when there is a 
change in the cross section. 
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FIG. 4: Time exposure pictures of the streaks in the gradual case (above) and the sudden 
increase in area case (below). 

 

FIG. 5: A plot of the area versus the flow speed, where the data is recorded once the width 
changes. While an inverse relationship is seen, the fit Av = constant does not seem to hold 

particularly well. 

 


