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2.1 (a) We have the following array:

s5 1 30 344
s4 10 80 480

s3 300− 80
10 = 22 344 · 10− 1 · 480

10 = 296 0

s2 80 · 22− 10 · 296
22 = −600

11 480 0

s1 296 · −600/11− 480 · 22
−600/11 = 2448

5 0

s0 480

There are 2 sign changes, so there are two roots with positive real parts.

(b) We have the following array:

s4 1 7 8
s3 2 -2 0

s2 2 · 7− 1 · −2
2 = 8 8

s1 −2 · 8− 2 · 8
8 = −4 0

s0 8

Again, there are two sign changes, so there are two roots with positive real parts.

(c) We have the following array:

s4 1 6 25
s3 0 0 0

s3 (new) 4 12 0

s2 24− 12
4 = 3 25

s1 12 · 3− 4 · 25
3 = −64

3 0

s0 25

where the new row for s3 was created by considering the auxiliary polynomial for s4, which was s4 + 6s2 + 25, and
computing its derivative, which was 4s3 + 12s.
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2.2 (a) The transfer function is:

Y (s)
R(s) =

e−sT · A
s(s+1)

1 + e−sT · A
s(s+1)

(0.1)

= A

A+ s(s+ 1)eTs , (0.2)

so the characteristic equation is
A+ s(s+ 1)eTs = 0. (0.3)

(b) Making this substitution, the transfer function becomes:

Y (s)
R(s) =

(1− sT ) · A
s(s+1)

1 + (1− sT ) · A
s(s+1)

(0.4)

= A(Ts− 1)
A(Ts− 1)− s(s+ 1) , (0.5)

and we wish to solve for the stability of the characteristic polynomial,

s2 + (1−AT )s+A = 0 (0.6)

by using the Routh’s Stability criterion. The Routh array is:

s2 1 A

s1 1−AT 0
s0 A 0

For the system to be stable, we need no sign changes in the first column. This means that AT < 1 and A > 0. If
we make a different approximation for e−sT , we get the transfer function

Y (s)
R(s) =

1−sT/2
1+sT/2 ·

A
s(s+1)

1 + 1−sT/2
1+sT/2 ·

A
s(s+1)

(0.7)

= A(Ts− 2)
A(Ts− 2)− s(s+ 1)(Ts+ 2) (0.8)

= A(Ts− 2)
ATs− 2A− Ts3 − Ts2 − 2s2 − 2s (0.9)

= A(2− Ts)
Ts3 + (T + 2)s2 + (2−AT )s+ 2A. (0.10)

The Routh array for the characteristic polynomial is

s3 T 2−AT
s2 T + 2 2A

s1 −2AT − (2−AT )(2 + T )
T + 2 0

s0 2A 0.

We want the first column to all have the same sign. Note that since T > 0 we have T + 2 > 0. We just need A > 0
and

2AT − (2−AT )(2 + T ) < 0 =⇒ AT 2 + 4AT − 2T − 4 < 0. (0.11)

2.3 (a) First, compute the transfer function for system (a). It is consisted of two nested negative feedback loops. The inner
loop has a gain of

KKm

s(1+τms)

1 + kts
KKm

s(1+τms)
= KKm

s(KKmkt + sτm + 1) . (0.12)
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Therefore, the transfer function is

Θ(s)
Θr(s)

=
kPKKm/k

s(KKmkt+sτm+1)

1 + kPKKm/k
s(KKmkt+sτm+1)

(0.13)

= KKmkP /k

KKmkP /k + s(KKmkt + sτm + 1) . (0.14)

The transfer function for (b) is

Θ(s)
Θr(s)

=
K′

s(1+τms)

1 + (1 + k′ts) K′

s(1+τms)
(0.15)

= K ′

K ′ + s(K ′k′t + sτm + 1) . (0.16)

Matching coefficients, we obtain

K ′ = KKmkP
k

(0.17)

k′t = ktk

kP
. (0.18)

(b) This is a unity feedback control, so the open-loop transfer function is

GDcl = kPKKm/k

s(KKmkt + sτm + 1) , (0.19)

which has a single pole at s = 0, so according to the Theorem learned in class, it is type 1, and the velocity error
coefficient is

Kν = kPKKm/k

(KKmkt + 1) = K ′

1 + k′t
. (0.20)

(c) Since kt is directly proportional to k′t and not K ′, increasing kt will cause the denominator to grow, which decreases
Kν .

2.4 (a) We obtain

Ec(s) = R(s)− Yc(s) = R

(
1− DcG

1 +DcGH

)
= R(s) · (DcGH −DcG+ 1)

DcGH + 1 , (0.21)

so the transfer function is
Ec(s)
R(s) = Dc(s)G(s)H(s)−Dc(s)G(s) + 1

Dc(s)G(s)H(s) + 1 . (0.22)

A ramp reference input is given by r(t) = t1(t) =⇒ R(s) = 1
s2 . Therefore,

ess = lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

Dc(s)G(s)H(s)−Dc(s)G(s) + 1
s(Dc(s)G(s)H(s) + 1) (0.23)

(b) Write G(s) = G̃(s)
s

. Then to be Type 1, it needs to be able to track a ramp reference input, i.e. |ess| < ∞. We
obtain,

ess = lim
s→0

1
s0.73G̃(s)(H(s)− 1) + 1
s( 1
s0.73G̃(s)H(s) + 1)

(0.24)

= lim
s→0

100s
s(100s+ 73H(s)G̃(s))

+ lim
s→0

73(H(s)− 1)G̃(s)
s(100s+ 73H(s)G̃(s))

(0.25)

= 100
73HG̃

+ lim
s→0

73(H(s)− 1)G̃(s)
s(100s+ 73H(s)G̃(s))

. (0.26)
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For the second term to not diverge, we want to write

(H(s)− 1)G̃(s) = sA(s) (0.27)

for some A(s) which does not have a pole at s = 0. That is, we want H(s) in the form of

H(s) = sA(s)
G̃(s)

+ 1 = A(s)
G(s) + 1. (0.28)

If this was true, then we have:

ess = 100
73G̃(0)

+ A(0)
G̃(0)

=
A(0) + 100

73
G̃(0)

. (0.29)

We just need to be careful that A(s) does not have a pole at s = 0. Note that we satisfy the relationship H(0) = 1
since G̃(0) 6= 0.

(c) Plugging this in, we have

ess = lim
s→0

s

s2
1 + (H − 1)GD

1 +DGH
(0.30)

= lim
s→0

1
s

1 +
(

2.75s+1
0.36s+1 − 1

)
1

s(s+1)2 · 0.73

1 + 1
s(s+1)2 · 0.73 · 2.75s+1

0.36s+1
(0.31)

= lim
s→0

400(s+ 1)2 · (9s+ 25) + 17447
25 · (16s(s+ 1)2 · (9s+ 25) + 803s+ 292) (0.32)

= 400(0 + 1)2 · (0 + 25) + 17447
25 · (0(0 + 1)2 · (0 + 25) + 0 + 292) (0.33)

= 3.75986301369863. (0.34)

Thus, Kν = 3.75986301369863−1 = 0.26597 s−1.

2.5 (a) Because it is unity feedback, the open loop transfer function is

Dc(s)G(s) = K(s+ a)
s+ b

· 1
s2 + 2ζs+ 1 = K(a+ s)

(b+ s)(s2 + 2sζ + 1) . (0.35)

To be type 1, we need b = 0 to get s = 0 as a pole. However, we also need a,K 6= 0 in order to prevent cancelling
out the pole.

(b) The closed loop transfer function is

T (s) = Dc(s)G(s)
1 +Dc(s)G(s) =

K(a+s)
(0+s)(s2+2sζ+1)

1 + K(a+s)
(0+s)(s2+2sζ+1)

(0.36)

= K(a+ s)
K(a+ s) + s(s2 + 2sζ + 1) (0.37)

= K(a+ s)
s3 + 2ζs2 + (K + 1)s+ aK

. (0.38)

We can create a Routh array for this transfer function to determine the stability,

s3 1 K + 1
s2 2ζ aK

s1 (K + 1)2ζ − aK
2ζ

s0 aK

To ensure that the system is stable, we require the first column to all be positive. That is, ζ > 0, aK > 0, and

2ζ(K + 1) > aK =⇒ K >
2ζ

a− 2ζ . (0.39)
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(c) We can solve for a to get
2ζ(K + 1)

K
> a (0.40)

For this to be true for all values of a, we can find the range of the LHS as a function of K in the domain (0,∞).
We obtain the range (2ζ,∞). Therefore,

0 < a < 2ζ, b = 0, ζ > 0, (0.41)

if and only if the system is both Type 1 and remains stable for every positive value for K.

2.6 (a) Because it has unity feedback, the system type is equal to the poles of

Dc(s)G(s) = 10(s+ 2)
s2(s+ 5) , (0.42)

so it is 2. We can compute
Ka = K2 = lim

s→0

10(s+ 2)
s+ 5 = 10(2)

5 = 4. (0.43)

Therefore, ess = 1
Ka

= 1
4 and ess = 0 for lower order inputs.

(b) We have shown in lecture that the transfer function when taking into account the disturbanceW for a unity feedback
system is

−Tw(s) = Ec(s)
W (s) = −G(s)

1 +G(s)Dc(s)
(0.44)

= −1/s2

1 + 10(s+2)
s2(s+5)

(0.45)

= −s− 5
s3 + 5s2 + 10s+ 20 , (0.46)

which has no zeros at the origin, so it is of type 0. The error is then

ess = −Tw(0) = − 5
20 = −1

4 , (0.47)

and K0,w = 4.

2.7 Let us define
Dc(s) = 160 · s+ 4

s+ 30 (0.48)

and
G(s) = 1

s(s+ 2) . (0.49)

Note that we have unity feedback, so the standard formulas from lecture apply.

(a) We have

Dc(s)G(s) = 160 · s+ 4
s+ 30 ·

1
s(s+ 2) = 160(s+ 4)

s(s+ 2)(s+ 30) , (0.50)

which is type 1, so it can track a step reference input with zero steady-state error. The velocity constant is

Kν = 160 · 4
30 ·

1
2 = 32

3 . (0.51)

(b) We can compute

Tw(s) =
1

s(s+2)

1 + 1
s(s+2) · 160 · s+4

s+30
(0.52)

= s+ 30
s3 + 32s2 + 220s+ 640 , (0.53)

which has no zeros at the origin, so it is of type 0, so it cannot reject a step disturbance w with zero steady-state
error.
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(c) The sensitivity for unity feedback control is

STG = 1
1 +GDc

= 1
1 + 1

s(s+2) · 160 · s+4
s+30

= s(s+ 2)(s+ 30)
s3 + 32s2 + 220s+ 640 . (0.54)

Let p = 2 and write the gain as
G(s) = 1

s(s+ p) . (0.55)

We have,

SGp
∣∣∣∣
p=2

= p
1

s(s+p)

∂

∂p

(
1

s(s+ p)

) ∣∣∣∣
p=2

(0.56)

= − p

p+ s

∣∣∣∣
p=2

(0.57)

= − 2
s+ 2 . (0.58)

Therefore,

ST2 = STGSG2 (0.59)

= 1
1 + 1

s(s+2) · 160 · s+4
s+30

· − 2
s+ 2 (0.60)

= − 2s(s+ 30)
s(s+ 2)(s+ 30) + 160s+ 640 . (0.61)

As s→ 0, the sensitivity approaches 0.

(d) For H(s) = 20
s+ 20 , we have the transfer function

Ec(s)
R(s) = 1− Dc(s)G(s)

1 +Dc(s)G(s)H(s) (0.62)

= 1−
160(s+4)

s(s+2)(s+30)

1 + 20
s+20 ·

160(s+4)
s(s+2)(s+30)

(0.63)

= s(s3 + 52s2 + 540s+ 560)
s4 + 52s3 + 700s2 + 4400s+ 12800 (0.64)

For a unit-step, we have R(s) = 1
s
, so the error is

ess = lim
s→0

Ec(s) = 0, (0.65)

so yes, it can track a step reference input with zero steady-state error. We can compute

Tw(s) =
1

s(s+2)

1 + 20
s+20 ·

1
s(s+2) · 160 · s+4

s+30
(0.66)

= (s+ 20)(s+ 30)
s(s+ 2)(s+ 20)(s+ 30) + 3200s+ 12800 (0.67)

which has no zeros at the origin, so it is of type 0, so it cannot reject a step disturbance w with zero steady-state
error. The sensitivity for feedback control is

STG = 1
1 +HGDc

= 1
1 + 20

s+20 ·
1

s(s+2) · 160 · s+4
s+30

= s(s+ 2)(s+ 20)(s+ 30)
s(s+ 2)(s+ 20)(s+ 30) + 3200s+ 12800 (0.68)

We also have

SGp
∣∣∣∣
p=2

= − 2
s+ 2 (0.69)

6



as before, so

ST2 = STGSG2 (0.70)

= 1
1 + 20

s+20 ·
1

s(s+2) · 160 · s+4
s+30

· − 2
s+ 2 (0.71)

= − 2s(s+ 20)(s+ 30)
s(s+ 2)(s+ 20)(s+ 30) + 3200s+ 12800 , (0.72)

which also approaches 0 as s→ 0.

2.8 (a) We have the following systems:

U = 4
(
R− Y + 1

4x
)

= 4R− 4Y + x (0.73)

x = U

s+ a
(0.74)

Y = U + x

s
. (0.75)

Substituting the first into the second and third gives

x = 4R− 4Y + x

s+ a
=⇒ x = 4R− 4Y

s+ a

(
1− 1

s+ a

)−1
= 4(R− Y )
a+ s− 1 (0.76)

Y = 4R− 4Y + 2x
s

. (0.77)

Plugging the second equation into the third gives

Y = 4R− 4Y
s

+ 2
s

(
4(R− Y )
a+ s− 1

)
= 4(R− Y )(a+ s+ 1)

s(a+ s− 1) (0.78)

Solving for Y gives
Y = 4R(a+ s+ 1)

as+ 4a+ s2 + 3s+ 4 (0.79)

so the transfer function is
Y (s)
R(s) = 4(a+ s+ 1)

as+ 4a+ s2 + 3s+ 4 (0.80)

For a standard unity feedback transfer function, we have

T (s) = G

1 +G
=⇒ G = T

1− T , (0.81)

so

G(s) =
4(a+s+1)

as+4a+s2+3s+4

1− 4(a+s+1)
as+4a+s2+3s+4

= 4(a+ s+ 1)
s(a+ s− 1) . (0.82)

(b) Substituting a = 1, we have

G(s) = 4(1 + s+ 1)
s(1 + s− 1) = 4(s+ 2)

s2 . (0.83)

and Dc(s) = 1. Note that GDc(s) has 2 poles at the origin, so it is type 1. The error constant is

K2 = lim
s→0

s2 4(s+ 2)
s2 = 8. (0.84)

(c) For simplicity, write δ ≡ δa.

G(s) = 4(1 + δ + s+ 1)
s(1 + δ + s− 1) = 4(δ + s+ 2)

s(δ + s) . (0.85)

This has 1 pole at the origin for δ 6= 0, so it is type 1. The error constant is

K1 = lim
s→0

s
4(δ + s+ 2)
s(δ + s) = 4 + 8

δa
. (0.86)
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2.9 (a) The F = ma force law gives us
1000v̇ = 10u− 10v. (0.87)

Taking the Laplace Transform of both sides gives

100sV (s) = U(s)− V (s) =⇒ V (s)
U(s) = 1

1 + 100s . (0.88)

(b) After adding the feedback loop, we have

V (s) = kP
s+ 0.02 [U(s)− V (s)] + 0.05

s+ 0.02W (s) (0.89)

=⇒ V (s) =
[

kP
s+ 0.02U(s) + 0.05

s+ 0.02W (s)
](

1 + kP
s+ 0.02

)−1
(0.90)

= kPU(s) + 0.05W (s)
s+ kP + 0.02 . (0.91)

The error is
E(s) = U(s)− kPU(s) + 0.05W

s+ kP + 0.02 = −0.05W (s) + (s+ 0.02)U(s)
s+ kP + 0.02 . (0.92)

Setting U(s) = 0 (no input), we want to maintain an error of less than 1 m/s. If the grade is w(t) = 2, then
W (s) = 2

s
, so we have

ess = lim
s→0
|sE(s)| = lim

s→0

∣∣∣∣ −0.1
s+ kP + 0.01

∣∣∣∣ = 0.1
kP + 0.02 . (0.93)

If we want ess < 1, we want
kP >

2
25 = 0.08. (0.94)

(c) By performing an integral control, we can upgrade the order of the system, so constant grades will give 0 error. We
have,

V (s) =
[

kI/s

s+ 0.02U(s) + 0.05
s+ 0.02W (s)

](
1 + kI/s

s+ 0.02

)−1
= 5 · (20kIU(s) + sW (s))

2 · (50kI + s(50s+ 1)) , (0.95)

so
E(s) = U(s)− 5 · (20kIU(s) + sW (s))

2 · (50kI + s(50s+ 1)) = s(100sU(s) + 2U(s)− 5W (s))
2 · (50kI + 50s2 + s) . (0.96)

Setting U(s) = 0 and W (s) = 2
s
gives

E(s) = − 5
50kI + 50s2 + s

(0.97)

and
ess = lim

s→0
sE(s) = 0, (0.98)

as expected.

(d) Recall that

E(s) = s(sU(s) + 0.02U(s)− 0.05W (s))
s2 + 0.02s+ kI

. (0.99)

We can compare the denominator to s2 + 2ζωns+ ω2
n to get ωn =

√
kI and

ζ = 0.01√
kI
. (0.100)

Critical damping occurs when ζ = 1, so pick kI = 0.012 = 1× 10−4.

2.10 (a) First consider
G(s) = 0.9

(s+ 0.4)(s+ 1.2) = 0.9
s2 + 8s

5 + 12
25
. (0.101)
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Comparing the gain to Kω2
n

s2 + 2ζωns+ ω2
n

We can match coefficients

ωn =
√

12/25 = 0.7071 (0.102)

ζ = 8/5
2 · 0.7071 = 1.13138 (0.103)

K = 0.9
12/25 = 1.875. (0.104)

The rise time is given by
tr = 1.8

ωn
< 2 =⇒ ωn > 0.9, (0.105)

which is currently not satisfied, so we need to introduce our PI controller. To be stable, we need

kI <
2ζωn(1 + kPK)

K
= 8/5 · (1 + 1.875)

1.875 = 2.453, (0.106)

where we let kP = 1. Consider Dc(s) = kP + kI/s. The transfer function is

T (s) =
(kP + kI/s) · 0.9

(s+0.4)(s+1.2)

1 + (kP + kI/s) · 0.9
(s+0.4)(s+1.2)

(0.107)

= 45(kI + s)
45kI + 45s+ 50s3 + 80s2 + 24s . (0.108)

Note that KI < 2.453 such that all poles are stable. We wish to cancel out a stable pole. Choose kI such that
s = −kI is a pole, i.e.

45kI − 45kI − 50k3
I + 80k2

I − 24kI = 0 =⇒ [kI = 0, kI = 2
5 , kI = 6

5]. (0.109)

We can cancel out both poles, since kI < 2.453 is satisfied for both 0.4 and 1.2. Plugging in kI = 0.4 gives

T (s) = 45(0.4 + s)
45(0.4) + 45s+ 50s3 + 80s2 + 24s = 0.9

s2 + 1.2s+ 0.9 , (0.110)

which gives ω′n =
√

0.9 = 0.9487, which satisfies ω′n > 0.9. Note that choosing kI = 1.2 gives the same thing.

(b) Consider Dc(s) = kP + kI/s+ kDs. The transfer function is

T (s) =
(kP + kI/s+ kDs) · 0.9

(s+0.4)(s+1.2)

1 + (kP + kI/s+ kDs) · 0.9
(s+0.4)(s+1.2)

(0.111)

= 45(kDs2 + kI + kP s)
45kDs2 + 45kI + 45kP s+ 50s3 + 80s2 + 24s . (0.112)

There is no overshoot when the system is first-order, i.e. the numerator is a factor of the denominator. We can
write:

50s3 + (80 + 45kD)s2 + (24 + 45kP )s+ 45kI (0.113)

=50s
kD

(
kDs

2 + kI + kP s
)

+
(

80 + 45kD −
50kP
kD

)
s2 +

(
24 + 45kP −

50kI
kD

)
s+ 45kI (0.114)

=50s
kD

(
kDs

2 + kI + kP s
)

+
(

80
kD

+ 45− 50kP
k2
D

)(
kDs

2 + kI + kP s
)

+
(
−80kI
kD

+ 50kP kI
k2
D

)
(0.115)

+
(

24− 50kI
kD
− 80kP

kD
+ 50k2

P

k2
D

)
s. (0.116)

The remainder of T (s)−1 is thus

R(s) =
(

24− 50kI
kD
− 80kP

kD
+ 50k2

P

k2
D

)
s+

(
−80kI
kD

+ 50kP kI
k2
D

)
(0.117)

= 2s(12k2
D − 25kDkI − 40kDkP + 25k2

P )
k2
D

+ 10kI(−8kD + 5kP )
k2
D

. (0.118)
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We need both terms to be zero. The constant term satisfies

kP
kD

= 8
5 = 1.6. (0.119)

For the linear (with respect to s) term to be zero, we require:

12− 25 kI
kD
− 40kP

kD
+ 25

(
kP
kD

)2
= 0 (0.120)

=⇒ 12− 25 · kI
kD
− 40 · 8

5 + 25 · 82

52 = 0 (0.121)

=⇒ 12− 25kI
kD

= 0 (0.122)

=⇒ kI
kD

= 12
25 = 0.48. (0.123)

We need to ensure we are cancelling out stable poles. Routh’s stability criteria gives

kI <
(2ζ + kDKωn)(1 + kpK)ωn

K
(0.124)

= (2 · 1.13138 + kD · 1.875 · 0.7071)(1 + kP · 1.875) · 0.7071
1.875 (0.125)

= (0.0625kD + 0.10667)(15.0kP + 8.0). (0.126)

Choose kD = 1 to get kI = 0.48 and kP = 1.6. Then we can verify that

(0.0625 + 0.10667)(15.0 · 1.6 + 8.0) = 5.41344 > 0.48. (0.127)
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