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Assignment 2
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2.1 (a) We have the following array:
s 1 30 344
st 10 80 480
3 300-80 _,, 344-10-1-480 _ 0|
10 10
80 -22 — 10 - 296 600
2
e e 4
s 5 T 80 0
(1| 296-—600/11—480-22 _ 2448 0
—600/11 5
5" 480

There are 2 sign changes, so there are two roots with positive real parts.

(b) We have the following array:

st 1 7
s3 2 )

2.7-1--2
2

=8 | 8

s 2

—2.8-2-8
! =—4]0
y 8
0 3

Again, there are two sign changes, so there are two roots with positive real parts.

(c) We have the following array:

st 1 25
s3 0
53 (new) 4 12
24 — 12
2
= 2
s 1 3 5
12-3—-4-25 64
1
i
s 3 3
s° 25

where the new row for s> was created by considering the auxiliary polynomial for s*, which was s* 4+ 6s% + 25, and
computing its derivative, which was 4s° + 12s.



2.2

2.3

(a)

The transfer function is:

—sT A
Y(S) _ € ’ s(s+1) (01)
R(s)  1+eT gy
A
= 0.2
A+ s(s+1)eTs’ (0.2)
so the characteristic equation is
A+ s(s+1)el* =0. (0.3)
Making this substitution, the transfer function becomes:
A
V(s) _ (1=sT) i (0.4)
R(s)  14+(1-sT) A4p
A(Ts—1)
_ 0.5
A(Ts—1)—s(s+1)’ (05)
and we wish to solve for the stability of the characteristic polynomial,
24+ (1—-AT)s+A=0 (0.6)

by using the Routh’s Stability criterion. The Routh array is:
52 1 A
st 1-AT | 0
s° A 0

For the system to be stable, we need no sign changes in the first column. This means that AT < 1 and A > 0. If
we make a different approximation for e %7, we get the transfer function

1—-sT/2 A
Y(s)  15sT/2  5(s+1)

= : (0.7)
1—-sT/2
Be) 1+ 5505
A(Ts —2
_ (Ts-2) (08)
A(Ts—2)—s(s+1)(Ts+2)
B A(Ts —2)
~ ATs —2A —Ts3 — Ts2 — 252 — 25 (09)
A2-T
2=Ts) (0.10)

T TS+ (T+2)s% + (2— AT)s + 24"

The Routh array for the characteristic polynomial is

s3 T 2— AT

2 T+2 24

g | 24T - (2—AT)(241T) 0
T +2

s° 2A 0.

We want the first column to all have the same sign. Note that since 7' > 0 we have T4+ 2 > 0. We just need A > 0
and
2AT — (2— AT)(2+T) <0 = AT? +4AT — 2T — 4 < 0. (0.11)

First, compute the transfer function for system (a). It is consisted of two nested negative feedback loops. The inner
loop has a gain of

KK,
sU+7ms) KK, (0.12)
1+ ktss({{fims) S(KKpks + 57 + 1) )



Therefore, the transfer function is

kp KK /k
O(s) _ _ S(RRnpkitstmtl) (0.13)
kpKKm/k :
Orls) 1+ s(KK}:,,,kt+s7/-m+1)
_ KK.,.kp/k (0.14)
KK, kp/k+ s(KKpki + st + 1) '
The transfer function for (b) is
K/
O(s) _ S(0+7ms) (0.15)
KI
= . 0.16
K' 4+ s(K'k} + 87 + 1) (0.16)
Matching coefficients, we obtain
KK,
K = kap (0.17)
kik
k=2 (0.18)
kp
(b) This is a unity feedback control, so the open-loop transfer function is
kpKKp/k
GDy = P / (0.19)

s(KK ks + st + 1)

which has a single pole at s = 0, so according to the Theorem learned in class, it is type 1, and the velocity error

coefficient is e X
P m
K, = = . 0.20
(KK ke + 1) 1+ K ( )

(c) Since k; is directly proportional to k; and not K, increasing k; will cause the denominator to grow, which decreases
K,.

2.4 (a) We obtain

E.(s) = R(s) — Ya(s) = R <1 _ 1435‘?(;]{) — R(s)- wﬁi&;ﬁ* 0 (0.21)
so the transfer function is Bus)  Du(s)G(s)H(s) — Du(5)G(s) + 1
Rs) — Du(s)Gs)H(s) + 1 ' (0.22)
A ramp reference input is given by r(t) = t1(t) = R(s) = S% Therefore,
) . . D.(s)G(s)H(s) — D¢(s)G(s) +1
Cos = tlggo elt) = ll—% sE(s) = ll—% s(Dc(s)G(s)H(s) + 1) (0.23)

G(s)

(b) Write G(s) = .

obtain,

. Then to be Type 1, it needs to be able to track a ramp reference input, i.e. |ess| < co. We

10.73G(s)(H(s) — 1) + 1

o tim ) (0.24)
50 s(L0.73G(s)H(s) + 1)
. 100s i SH(s) — 1)G(s) (0.25)
s—=0 §(100s + 7T3H (s)G(s)) 50 5(100s + 73H (s)G(s))
100 . T3(H(s) ~DG(s) (0.26)

T 73HG 550 5(100s + T3H(5)G(s))



For the second term to not diverge, we want to write

(H(s) — 1)G(s) = sA(s) (0.27)

for some A(s) which does not have a pole at s = 0. That is, we want H(s) in the form of

s{l(s) . A(s)

H(s) =Z05 a6s)

+1. (0.28)

If this was true, then we have: 100
100 A0 A(0) + =5
_ 100 A _ A0+ 7 (0.29)
73G(0)  G(0) G(0)
We just need to be careful that A(s) does not have a pole at s = 0. Note that we satisfy the relationship H(0) = 1
since G(0) # 0.

688

(c) Plugging this in, we have
s 1+ (H-1)GD

e = I S T T heH (0.30)
.75s
o1 L+ (33251% o 1) s(s-"l-l)2 -0.73
= lim ~ T RTINS (0.31)
5205 1+ sy - 073 G
2 .
~ lim 400(s + 1)# - (9s + 25) + 17447 (0.32)
5—0 25 - (16s(s + 1)% - (9s + 25) + 803s + 292)
_400(0 + 1)2- (0 + 25) + 17447 (0.33)
~ 25 (0(0+1)2- (0 +25) + 0 + 292) '
= 3.75986301369863. (0.34)
Thus, K, = 3.75986301369863 ' = 0.26597 s~ .
2.5 (a) Because it is unity feedback, the open loop transfer function is
K 1 K
Du(s)G(s) = KL+ 9) (a+s) (0.35)

s+b  s2+20s+1 (b+s)(s2+2sC+1)

To be type 1, we need b = 0 to get s = 0 as a pole. However, we also need a, K # 0 in order to prevent cancelling
out the pole.

(b) The closed loop transfer function is

__ Klats)

T(s) = Dc(s)G(s) _  @ro)(sZ+2s¢tD) (0.36)
1 + D((S)G(S) 1 + %
- K(a+s)

-~ K(a+s)+s(s>+2s¢+1)

K(a+s)
34202+ (K + 1)s+aK' (0.38)

(0.37)

We can create a Routh array for this transfer function to determine the stability,

s® 1 K+1
2 2¢ aK
5l (K+1)2¢ —aK

2¢
0 aK

To ensure that the system is stable, we require the first column to all be positive. That is, { > 0, aK > 0, and

2¢

20(K +1 K = K .
((K+1)>a >a_2<

(0.39)



(c)

2.6 (a)

We can solve for a to get
20(K +1)
K
For this to be true for all values of a, we can find the range of the LHS as a function of K in the domain (0, c0).
We obtain the range (2¢, c0). Therefore,

(0.40)

0<a<2¢, b=0, ¢ >0, (0.41)

if and only if the system is both Type 1 and remains stable for every positive value for K.

Because it has unity feedback, the system type is equal to the poles of

10(s +2)
D.(5)G(s) = ————=, 0.42
()G6) = 35 (0.42)
so it is 2. We can compute
o . 10(s+2)  10(2)
Fomfe=i =5 — 75 * (049
1 1 .
Therefore, egs = i = 1 and ezs = 0 for lower order inputs.

We have shown in lecture that the transfer function when taking into account the disturbance W for a unity feedback
system is

T ) T TGP (049
—1/s2

= e (0.45)

= 55 (0.46)

s34+ 552 4+ 105 + 20’

which has no zeros at the origin, so it is of type 0. The error is then

5 1
ss:_Tw = -~ = 7 0.47
‘ O=-o=-7 (0.47)
and Ko, = 4.
2.7 Let us define 4
s
D.(s) =160 - 0.48
(s) s+ 30 (0.48)
and 1

G(s) = . 0.49
)= 5513 (0.49)

Note that we have unity feedback, so the standard formulas from lecture apply.

(a) We have
4 1 160 4

Do(5)G(s) = 160 > = (s +4) (0.50)

(b)

s+30 s(s+2)  s(s+2)(s+30)

which is type 1, so it can track a step reference input with zero steady-state error. The velocity constant is

4 1 32
K,=160 - — - = = —. 0.51
60 30 2 3 ( )
We can compute
(1 )
To(s) = e (0.52)
1+ s(s+2) - 160 - s+30
30
- i (0.53)

53 + 3252 4 2205 + 640’

which has no zeros at the origin, so it is of type 0, so it cannot reject a step disturbance w with zero steady-state
error.



(c) The sensitivity for unity feedback control is

ST _ 1 B 1 _ s(s+2)(s+ 30) (0.54)
&= = — = . .
1+ GDe 1+ il - 160 S5 8% + 325 + 2205 + 640
Let p = 2 and write the gain as
1
G(s) = . 0.55
)= s (0.55)
We have,
0 1
sél =P 9 ( ) (0.56)
P s m Ip \s(s+p)) |,
___b (0.57)
p +s p=2
2
=— . 0.58
s+2 ( )
Therefore,
ST = SLs$ (0.59)
1 2
= —r (0.60)
1+ —5(;”) 160 - 255 s+ 2
_ 2s(s + 30) (0.61)
s(s+2)(s +30) + 160s + 640" '
As s — 0, the sensitivity approaches 0.
2
(d) For H(s) = 70, we have the transfer function
s+ 20
R(s) 1+ D.(s)G(s)H(s)
160(s+4)
1 s(s+2)(s+30)
=1 1+ 20 . _ 160(s+4) (0'63)
s+20  s(s+2)(s+30)
B s(s% + 5252 + 540s + 560) (0.64)
s 4+ 5253 + 70052 + 44005 + 12800 '
1
For a unit-step, we have R(s) = 50O the error is
€os = llg(l) E.(s) =0, (0.65)
so yes, it can track a step reference input with zero steady-state error. We can compute
(1 )
T, (s) = et — (0.66)
1+ 55 s - 160 5
_ (s +20)(s + 30) (0.67)

s(s + 2)(s + 20)(s + 30) + 32005 + 12800

which has no zeros at the origin, so it is of type 0, so it cannot reject a step disturbance w with zero steady-state
error. The sensitivity for feedback control is

T 1 1 s(s+2)(s +20)(s + 30)

ST — - = 0.68
© T 1H+HGD, 1+ 255 s 160~ 255 s(s +2)(s + 20)(s + 30) + 32005 + 12800 (0.68)
We also have
2
SF =- 0.69
p s+ 2 ( )

p=2



2.8

as before, so

Sy = 8LS
B 1 2

- 20 1 +4
1+ 555 5612 160 5 s+2

B 2s(s 4+ 20)(s + 30)
s(s + 2)(s + 20)(s + 30) + 32005 + 12800

which also approaches 0 as s — 0.

We have the following systems:

U—4<R—Y—|—ix) =4R —4Y +=x

U

s+ a
y- Utz
S

Substituting the first into the second and third gives

AR —4Y + =z 4R—4Y< 1 )1 4R-Y)
r=——"""— — T = 1-— = -7
s+ a s+a s+a a+s—1
Y:4R—4Y+2x.
s

Plugging the second equation into the third gives

Y

_AR-4Y 2 (4(RY)> CAR-Y)(a+s+1)

s s\a+ts—1 s(a+s—1)

Solving for Y gives
4R(a+ s+ 1)

as+4a+s2+3s+4

so the transfer function is
Y(s) d(a+s+1)

R(s) as+4a+s2+3s+4

For a standard unity feedback transfer function, we have

G T
T = - -
©=17e = Y1
© 4(at+s+1)
G(S) _ as+4a+s'2+35+4 _ 4(@ + s+ 1)
1 _ _ AlatstD) s(a+s—1)
as+4a+s2+3s+4

Substituting a = 1, we have
4(1 1 4 2
Gl M5 +D) _As+2)
s(1+s—1) 52

and D.(s) = 1. Note that GD,(s) has 2 poles at the origin, so it is type 1. The error constant is

Ky = lim gw

= 8.
s—0 82

For simplicity, write § = da.

41 +0+s+1)  4(6+s+2)
S s(1+6+s—1) s(6+s)
This has 1 pole at the origin for § # 0, so it is type 1. The error constant is

G(s)

4 2
K, = hmsM:@r é
s—0

s(0+s) da

(0.70)
(0.71)

(0.72)

(0.73)

(0.74)

(0.75)

(0.76)

(0.77)

(0.78)

(0.79)

(0.80)

(0.81)

(0.82)

(0.83)

(0.84)

(0.85)

(0.86)



2.9 (a) The F' = ma force law gives us
10006 = 10u — 10v. (0.87)

Taking the Laplace Transform of both sides gives

V(s) 1
1 = — = . .
00sV(s) =U(s) = V(s) = U() ~ 151008 (0.88)
(b) After adding the feedback loop, we have
kp 0.05
Vi(s) = ST 0.02 U(s)—V(s)] + ST 0.02 W(s) (0.89)
kp 0.05 kp \ !

=V = oWt s o.on(S)} ( L 0.02) (0.90)

 kpU(s) + 0.05W(s)
s+ kp+0.02 (091)

The error is kpU 0.06W 0.06W 0.02)U

B(s) = U(s) — 2P (s) +0. _ —0. (s) + (s +0.02) (s) (092)

s+ kp+0.02 - s+ kp+0.02
Setting U(s) = 0 (no input), we want to maintain an error of less than 1 m/s. If the grade is w(t) = 2, then

W (s) = —, so we have
s

—0.1 0.1
ss = Ui E =1 = . )
€ss = limJsB(s)] = limg S—‘rk‘p—l—0.0l’ kp + 0.02 (093)
If we want egs < 1, we want
2
kp > — = 0.08. (0.94)

25

(c) By performing an integral control, we can upgrade the order of the system, so constant grades will give 0 error. We

have,
Vis) =3 ilé.soz Uls) + 2 3'(3).502 W(S)] (1 t3 iléfm)_l - 52'.((E%ZIIUiSJ(;0§T(1i)))’ (0.95)
Setting U(s) = 0 and W (s) — % gives
E(s) = _W}W (0.97)
" s = lim 5E(s) = 0, (0.98)

as expected.

(d) Recall that
~ s(sU(s) 4+ 0.02U(s) — 0.05W (s))
Bs) = 52 +0.025 + kg ' (0.99)

We can compare the denominator to s% + 2Cwy,s + wi to get w, = v/kr and

= ?/% (0.100)
Critical damping occurs when ¢ = 1, so pick k7 = 0.01> =1 x 107
2.10 (a) First consider
Gls) = 09 -9 (0.101)

(s+04)(s+1.2) 248412



2
n

$2 4 2wy s + w2

Kw

Comparing the gain to We can match coefficients

wn, =+/12/25 =0.7071 (0.102)
8/5
0.9
= —— =1.875. .104
12/%5 875 (0.104)
The rise time is given by

1.8

t, = o <2 = w, >0.9, (0.105)

which is currently not satisfied, so we need to introduce our Pl controller. To be stable, we need

2wn(1+kpK) 8/5-(1+1.875)
K - 1.875

kr < = 2.453, (0.106)

where we let kp = 1. Consider D.(s) = kp + k;/s. The transfer function is

~ (kptki/s)- GTOATTD)
5) = 1 k k .09
+ (kp +k1/$) - GromGsriy
. 45(k1 + S)
~ 45ks + 455 + 5083 + 8052 + 245

(0.107)

(0.108)

Note that K; < 2.453 such that all poles are stable. We wish to cancel out a stable pole. Choose k; such that
s = —ky is a pole, i.e.

2 6
45k; — 45ky — 50k} + 80k? — 24k =0 = [k; =0, kr = = ki = g]~ (0.109)

We can cancel out both poles, since k; < 2.453 is satisfied for both 0.4 and 1.2. Plugging in k; = 0.4 gives

45(0.4 + s) _ 0.9 (0.110)

T =
(5) = T5(0.4) T 255 + 5057 + 8057 1 245 2 7125 1 0.9°

which gives w!, = V0.9 = 0.9487, which satisfies w/, > 0.9. Note that choosing k; = 1.2 gives the same thing.
Consider D.(s) = kp + kr/s + kps. The transfer function is

o ket kifs 4 kps) - vt
Lt (kp +ki/s + kps) - Groayierie

. 45(k‘D82+]<3[+k‘p5)
" 45kps? 4 45k + 45kps + 5083 + 80s2 + 245

(0.111)

(0.112)

There is no overshoot when the system is first-order, i.e. the numerator is a factor of the denominator. We can
write:

50s® + (80 + 45kp)s” + (24 + 45kp)s + 45k; (0.113)
50 50k 50k
=22 (kps® + ki + kps) + (80 +45kp — =L ) s 4 (24 + 45kp — =L | s + 45k, (0.114)
kp kp kp
50s 80 50]613 80k‘] 50k5pk3]
=" (kps®* +k; +k — 445 - =) (kps® + kr + k - 0.115
kD(Ds+1+ ps)+(kD+ k%)([)s+1+ ps)+( = ) ) (0.115)
50k;  80kp  50k2
24 — - . 0.116
+ ( . o + 2 s ( )
The remainder of T'(s)™! is thus
50k;  80kp  50k2 80k;  50kpk;
R(s) = (24— - == 0.117
(s) ( ey ey oA L 2 (0.117)
25(12k2 — 25kpk; — 40kpkp + 25k2) 10k (—8kp + 5k
_ 2s(12k pkr pkp + 25kp) I 1(=8kp + P). (0.118)

kb kb



We need both terms to be zero. The constant term satisfies

kp 8
— = - =1.6.
kp 5

For the linear (with respect to s) term to be zero, we require:

2
12—25161—4()]{;1)—1-25(]@) =0

kp kp kp
kr 8 82
—12-25-— —40--+25-—= =0
kp 5Jr 52
:>12—25—k[:0
kp
ko 12
22 p4s.
kp 25

We need to ensure we are cancelling out stable poles. Routh’s stability criteria gives

(2¢ + kpKwy) (1 + kyK)wy,
K
(2-1.13138 + kp - 1.875 - 0.7071)(1 + kp - 1.875) - 0.7071

kr <

1.875
= (0.0625kp, + 0.10667)(15.0kp + 8.0).

Choose kp =1 to get k; = 0.48 and kp = 1.6. Then we can verify that

(0.0625 + 0.10667)(15.0 - 1.6 4+ 8.0) = 5.41344 > 0.48.

10

(0.119)

(0.120)
(0.121)
(0.122)

(0.123)

(0.124)

(0.125)
(0.126)

(0.127)



