
AER372: Control Systems
Assignment 3

QiLin Xue

Spring 2023

3.1 We want to turn the characteristic equation into the form a(s) + L(s)b(s) where a(s), b(s) are monic polynomials. We
have:

(a) We have the characteristic polynomial
(s+ c)3 +A(Ts+ 1) = 0. (1)

(i) Versus parameter A: We can rewrite

(s+ c)3 +AT (s+ 1/T ) = 0. (2)

Therefore,

a(s) = (s+ c)3, b(s) = s+ 1/T, L(s) = s+ 1/T
(s+ c)3 (3)

(ii) Versus parameter T: We can rewrite
(s+ c)3 +A+ATs. (4)

Therefore,
a(s) = (s+ c)3 +A, b(s) = s, L(s) = s

(s+ c)3 +A
. (5)

(iii) Versus parameter c : This is impossible since the characteristic equation contains nonlinear terms in c. However,
it is still possible to find the roots of the characteristic equation. We can use the cubic equation,

c = ωk 3
√
−A(ts+ 1)− s (6)

for k = 0, 1, 2 and ω is the principal 3rd root of unity. Alternatively (and more realistically), we can use a more
superior computer algebra system such as Mathematica to find the roots.

(b) We have

1 +
[
kP + kI

s
+ kDs

τs+ 1

]
A
c(s)
d(s) = 0. (7)

(i) Versus kP : We rewrite (
1 +

[
kI
s

+ kDs

τs+ 1

]
A
c(s)
d(s)

)
+ kPA

c(s)
d(s) = 0. (8)

To make everything a polynomial, we multiply by d(s)s(τs+ 1) to get(
d(s)s(τs+ 1) +A(kDs2 + kI(sτ + 1))c(s)

)
+ kPAc(s)s(τs+ 1) = 0. (9)

1



The highest degree is in the term s2τd(s) since d has a higher degree than c(s). Then dividing by τ, we have(
d(s)s(s+ 1/τ) +A(kDs2/τ + kI(s+ 1/τ))c(s)

)
+ kPAc(s)s(s+ 1/τ) = 0 (10)

=⇒
(
s2d(s) + sd(s)

τ
+ AkDs

2c(s)
τ

+AkIsc(s) + AkIc(s)
τ

)
+ kPAc(s)(s2 + s/τ) = 0. (11)

Therefore,

a(s) = s2d(s) + sd(s)
τ

+ AkDs
2c(s)
τ

+AkIsc(s) + AkIc(s)
τ

b(s) = c(s)(s2 + s/τ)

L(s) == s(sτ + 1)c(s)
sd(s) + τ(AkIsc(s) + d(s)) +AkDs2c(s) +AkIc(s)

(12)

(13)

(14)

(ii) Versus kI : Same thing but make the substitution kP ←
kI
s

and kI ← kP s. This gives(
s2d(s) + sd(s)

τ
+ AkDs

2c(s)
τ

+AkP s
2c(s) + AkP sc(s)

τ

)
+ kIAc(s)(s+ 1/τ) = 0. (15)

Which gives

a(s) = s2d(s) + sd(s)
τ

+ AkDs
2c(s)
τ

+AkP s
2c(s) + AkP sc(s)

τ
b(s) = c(s)(s+ 1/τ)

L(s) = (sτ + 1)c(s)
s2τd(s) + sd(s) +AkDs2c(s) +AkP s2τc(s) +AkP sc(s)

(16)

(17)

(18)

(iii) Versus kD: We can rewrite(
s2d(s) + sd(s)

τ
+ AkDs

2c(s)
τ

+AkIsc(s) + AkIc(s)
τ

)
+ kPAc(s)(s2 + s/τ) = 0 (19)

=⇒
(
s2d(s) + sd(s)

τ
+AkIsc(s) + AkIc(s)

τ
+ kPAc(s)(s2 + s/τ)

)
+ kD

As2c(s)
τ

= 0. (20)

This gives

a(s) = s2d(s) + sd(s)
τ

+AkIsc(s) + AkIc(s)
τ

+ kPAc(s)(s2 + s/τ)

b(s) = As2c(s)
τ

L(s) = As2c(s)
s2τd(s) + sd(s) +AkIsτc(s) +AkIc(s) +AkP s2τc(s) +AkP sc(s)

(21)

(22)

(23)

(iv) Versus τ : We can rewrite, multiply by τ , and then collect terms(
s2d(s) + sd(s)

τ
+ AkDs

2c(s)
τ

+AkIsc(s) + AkIc(s)
τ

)
+ kPAc(s)(s2 + s/τ) = 0 (24)

=⇒ AkDs
2c(s) +AkP sc(s) +AkIc(s) + sd(s) +AkIsτc(s) +AkP s

2τc(s) + s2τd(s) = 0 (25)
=⇒

(
AkDs

2c(s) +AkP sc(s) +AkIc(s) + sd(s)
)

+ τ
(
AkIsc(s) +AkP s

2c(s) + s2d(s)
)

= 0. (26)

Dividing by AkD gives(
s2c(s) + kIc(s)

kD
+ kP sc(s)

kD
+ sd(s)
AkD

)
+ τ

AkD

(
AkIsc(s) +AkP s

2c(s) + s2d(s)
)

= 0. (27)

This gives

a(s) = s2c(s) + kIc(s)
kD

+ kP sc(s)
kD

+ sd(s)
AkD

b(s) = AkIsc(s) +AkP s
2c(s) + s2d(s)

L(s) = AkD
s2d(s) +AkIsc(s) +AkP s

2c(s)
AkDs2c(s) +AkIc(s) +AkP sc(s) + sd(s) .

(28)

(29)

(30)

2



3.2 (a) Note that G(s) has m = 0 roots and has n = 3 poles, particularly

s = 0, s = −2± i. (31)

Asymptotes: The number of asymptotes is n−m = 3 with angles

φ` = 180◦ + 360◦(`− 1)
3 = 60◦, 180◦,−60◦ (32)

for ` = 1, 2, 3, and they radiate from the point on the real line,

α = 0 + (−2 + i) + (−2− i)
3 = −4

3 . (33)

Breakaway and Break-in Points: They occur when 1 +G(s) hits a local minimum/maximum (i.e. a saddle-node

bifurcation like behaviour), which leads to when dL(s)
ds

= 0. We can compute,

d

ds

(
s3 + 4s2 + 5s

)
= 3s2 + 8s+ 5 = 0 =⇒ s = −5

3 , s = −1 (34)

Angles of departure and arrival: The angle of departure of the pole −2 + i is given by

φdep = −
∑
i 6=dep

φi − 180◦ (35)

= −
(
(180◦ − tan−1(1/2)) + 90◦

)
− 180◦ (36)

= −63.43◦ . (37)

The angle of departure of the pole −2− i is given by

φdep = −
∑
i 6=dep

φi − 180◦ (38)

= −
(
(180◦ + tan−1(1/2))− 90◦

)
− 180◦ (39)

= 63.43◦ . (40)

The angle of departure of the pole 0 is given by

φdep = −
∑
i6=dep

φi − 180◦ (41)

= −(180◦ − tan−1(1/2) + 180◦ + tan−1(1/2))− 180◦ (42)

= 180◦ . (43)

There are no angles of arrival since the system has no zeros.

Crossings with imaginary axis: For what values of K does 1 + G(s) have roots that are purely imaginary? We
have,

1 +G(s) = 0 =⇒ s3 + 4s2 + 5s+K = 0. (44)

Substituting s = bi, we have
− b3i− 4b2 + 5bi+K = 0. (45)

We want the real and the imaginary part to be zero, i.e. this gives the system

K = 4b2 (46)
5b = b3 (47)

We get b = 0,±
√

5, so we get K = 0, 20. At K = 0 the roots cross the imaginary axis at s = 0 and at K = 20 the
roots cross the imgainary axis at s = ±

√
5i .

I draw the plot below,

3



where the arrows indicate the direction the roots are moving with increasing K. I used Matlab to verify these results.

(b) The system is underdamped when the roots have negative real parts (so it’s stable) and a nonzero imaginary part (so
it’s oscillatory). Similarly, the system is overdamped when the roots have negative real parts with a zero imaginary
part. When they transition, we have critical damping, which occurs at s = −1,−5/3. We just need to find the
corresponding K value.

Recall that 1 +G(s) = 0 =⇒ s3 + 4s2 + 5s+K = 0. Then Plugging in s = −1 gives

(−1)3 + 4(−1)2 + 5(−1) +K = K − 2 = 0 =⇒ K = 2 , (48)

and
(−5/3)3 + 4(−5/3)2 + 5(−5/3) +K = K − 50

27 = 0 =⇒ K ≈ 1.85 . (49)

Before K = 1.85, we have two roots (which originated from −2± i) have a nonzero imaginary part and after K = 2,
we have one root (which originated from s = 0 with a nonzero imaginary part). Therefore:

• K < 1.85 is underdamped

• 1.85 < K < 2 is overdamped

• 2 < K < 20 is underdamped.

Beyond K = 20 it passes the imaginary axis, so it becomes unstable.

3.3 For the three cases, we have the following root-locus plots:

4



(a) (b)

(c)

To analyze these plots, we perform some basic computations. First, the zeros occur at

s2 + (5/6)s+ (1/3) = 0 =⇒ s = − 5
12 ±

√
23i
12 (50)

which corresponds to the two open circles in the plots, i.e. these are where two of the roots will end up as K →∞. For
all three plots, there are five poles, one at s = 0 with multiplicity 3 (so there are three branches coming out) and two
poles s, s̄ with a negative real part and a non-zero imaginary component. These are represented by an X. We compare
the plots pairwise:

• (a) and (b): The breakaway points for part (a) are

s = −1± i,−1.56± 0.497i (51)

The second pair of breakway points do not lie on the locus, but −1 ± i does, so we have an intersection point
between two branches. However, for (b), the breakaway points are

s = −1.14± 0.976i,−1.42± 0.716i. (52)

5



Here, the real component of the breakaway point has changed slightly, due to modifying the constant term in the
denominator. This slight change has made the breakaway point not lie on the locus, so we do not have an intersection
point between two branches. Even if we set β = 0.001 we still have this behaviour.

• (a)/(b) and (c) The major difference here is that there are now two break-away points. We can compute the
breakaway points to be

s = −3.02,−1.15,−0.807± 0.943i. (53)

Here, the conjugate roots are not on the locus, so we do not have an intersection somewhere off the real-axis.
However, there are still two intersection points between branches on the real axis, specifically at −3.02 and −1.15.
This means that the other poles and zeros (excluding s = 0) need to have a branch that crosses this point and
connects it to the real-axis.

Note that all computations here were performed with CAS via Mathematica, along with the plots.

3.4 Solution 1 (Hand computation) Our goal is to find the poles of the closed-loop transfer function. Recall that

ζ = cos θ =⇒ θ = 60◦ (54)

and
Im s

Re s = ± tan θ = ±
√

3. (55)

In other words, we want s = −β +
√

3βi to be a root. Our open-loop transfer function is

G(s)Dc(s) = 10(s+ a)
s(s+ 1)(s+ 8) (56)

and the closed-loop transfer function is

G(s)Dc(s)
1 +G(s)Dc(s)

=
10(s+a)

s(s+1)(s+8)

1 + 10(s+a)
s(s+1)(s+8)

(57)

= 10(a+ s)
10a+ s(s+ 1)(s+ 8) + 10s . (58)

Substituting in s = β +
√

3βi to the characteristic equation gives

10a+ (−β +
√

3βi)(−β +
√

3βi+ 1)(−β +
√

3βi+ 8) + 10(−β +
√

3βi) = 0 (59)
=⇒ 10a+ 8β3 − 18β2 − 18

√
3iβ2 − 18β + 18

√
3iβ = 0. (60)

Separating into real and imaginary gives

0 = 10a+ 8β3 − 18β2 − 18β (61)
0 = −18

√
3β2 + 18

√
3β. (62)

The second equation gives β = 0, 1. Plugging this into the first equation gives

a = −8(1)3 + 18(1)2 + 18(1)
10 = 2.8 (63)

a = −8(0)3 + 18(0)2 + 18(0)
10 = 0. (64)

Note that a = 0 is not a valid choice, as it gives s = 0 which does not have ζ = 0.5. However, a = 2.8 is valid, and is
the only choice that gives a pole at s = −β ±

√
3βi.

Solution 2 (Root Locus): The characteristic equation is

1 +G(s)Dc(s) = 0 (65)

=⇒ 1 + 10
s(s+ 1) ·

s+ a

s+ 8 = 0 (66)

=⇒ 10a+ s3 + 9s2 + 18s = 0 (67)

6



which can be put in the form of
(s3 + 9s2 + 18s) + a(10), (68)

so we can use the root-locus method on
10

s3 + 9s2 + 18s , (69)

which gives us the following plot on Matlab:

where using the intersect tool, gives a = 2.8 as well. Note that I borrowed code from Adam Danz from MathWorks to
get the intersection working.

3.5 (a) This is impossible. Refer to the root locus plot below for KG(s).

For any K > 0 there are two roots with a positive real part, which is unstable.

(b) The open loop gain is

K · 1/(s2(s+ 5))
1 +Kts · 1/(s2(s+ 5)) = K

s(Kt + s(s+ 5)) . (70)

7

https://www.mathworks.com/matlabcentral/answers/1442099-how-to-find-the-intersection-a-root-locus-plot-and-a-line-with-specific-angle


This has no zeros, and has poles at s = 0 and when s2 + 5s+Kt = 0, which occurs at

s = −5
2 ±
√

25− 4Kt

2 . (71)

For 0 < Kt < 25/4, we have the two roots s+, s− < 0. The angle of departure from the s = 0 root is

φdep = −(180◦ + 180◦)− 180◦ = 180◦. (72)

Similarly, for Kt > 25/4, we have two roots s, s̄ with a negative real part and a non-zero imaginary component.
The angle of departure from the s = 0 root is still 180◦ (similar computation as Q2). Finally, we should expect the
same behavior at Kt = 25/4 because we should expect the locus to change continuously as a function of Kt.

Because the angle of departure is 180◦, for small values of K we can guarantee that all roots have a negative real
component. However, for large enough K we could still have roots that go off to have a positive real component,
so yes, we should expect a relation between K and Kt to guarantee a stable response.

(c) We have already computed some of these ranges:

• 0 < Kt < 25/4: all roots lie on the real axis with negative real part

• Kt = 25/4 : there are only two distinct roots (where one has a multiplicity of 2), both on the real axis with
negative real part

• 25/3 > Kt > 25/4 : there are two roots with a negative real part and a non-zero imaginary component. We
will see where the 25/3 comes from later.

Note that s = 0 is a root for all of them. Also, we can compute where the break-away points are:

d

ds

(
sKt + s3 + 5s2) = Kt + 3s2 + 10s = 0 =⇒ s = −5

3 ±
√

25− 3Kt

3 . (73)

For Kt <
25
3 , there are two distinct breakaway points. But at Kt = 25/3 there is only one, and as Kt > 25/3 there

are none, signifying a change in behaviour. This gives two more regions:

• Kt = 25
3 : there is one breakaway point

• Kt >
25
3 : there are no breakaway points.

(d) No overshoot occurs when the system is critically or over-damped, i.e. the poles are on the negative real axis (so
not oscillations). The rise time is determined by how far away the poles are from the imaginary axis. Because of
this, we will look for when this root has a multiplicity of 2 (i.e. if it didn’t, then one root would always be to the
right (and to the left) of this double root, so a local min/max can only exist at a double root).

Note that these are the poles of the closed-loop system, which are the roots of

s3 + 5s2 +Kts+K = 0. (74)

The double root can only occur when the derivative is zero, i.e.

3s2 + 10s+Kt =⇒ s = −5
3 ±
√

25− 3Kt

3 (75)

but since Kt ≤ 5 is the upper bound, we will choose Kt = 5 which gives s = −5/3±
√

103, i.e. s = −0.613,−2.73.
We can plug these values back into the original equation to get the corresponding K values:

(−0.613)3 + 5(−0.613)2 + 5(−0.613) +K = 0 =⇒ K = 1.416501397 (76)
(−2.73)3 + 5(−2.73)2 + 5(−2.73) +K = 0 =⇒ K = −3.268083 (77)

so only the first value is valid since K > 0. Thus, we pick

(Kt,K) = (5, 1.4) . (78)

We can plot this in MATLAB,

8



(e) Using MATLAB, I was able to make the root-locus plot for the open-loop transfer function

K

s3 + 5s2 + 5s (79)

where Kt = 5 was used. This value was used because of the earlier discussion of how increasing Kt will cause the
rise time to increase. The plot is shown below,

Using rlocfind(), we can determine the location of the breakaway point (i.e. when the system changes from
overdamped to underdamped) and get around

K = 1.42 , (80)

9



which agrees with our earlier analysis. To verify this, we can try a few different values for Kt, and we will see that
this is maximized at Kt = 5.

3.6 Let’s translate the design specifications into more useful quantities.

• DS1: System needs to be type 1, i.e. have a pole at s = 0. This means we should have an integrator.

• DS2: We want 1/Kv < 0.28 or equivalently

lim
s→0

sGDcl(s) > 3.57. (81)

• DS3: We use the equation for percent overshoot (note that here it is approximate, but we will use it as a starting
point)

e−πζ/
√

1−ζ2
< 0.05 =⇒ ζ > 0.752 (82)

This corresponds to an angle θ = cos−1 0.752 = 41.218◦, and∣∣∣∣ Im s

Re s

∣∣∣∣ = tan θ < 0.876 (83)

• DS4: The real part should be smaller than −4/1.5 ≈ −2.7.

Consider a controller in the form of
kP (1 + α/s) (84)

where α = kI/kP . We guess the poles (nice numbers that satisfy DS3,DS4)

s = −3± 2i (85)

in order to satisfy DS3 and DS4. Using root-locus and a bit of trial and error, we were able to obtain the poles −2.71±1.77i
with α = 0.7 and kP = 8.5938. To ensure it satisfies DS2, we can compute

lim
s→0

s · 8.5938(1 + 0.7/s) · 1
(s+ 1)(s+ 5) = lim

s→0

8.5938 · 0.7 · (2s+ 1)
(s+ 1)(s+ 5) = 1.2, (86)

which is almost three times smaller than 3.57 Repeated experimentation leads us to believe that the location of viable
roots cannot change significantly by changing kP , α, so we look into a three parameter controller, such as a PID controller.
We have the ansatz

kP (1 + α/s+ βs) (87)

where β = kD/kP . The condition for DS2 becomes

lim
s→0

skP (1 + α/s+ βs) · 1
(s+ 1)(s+ 5) = lim

s→0

kP (α+ s(βs+ 1))
(s+ 1)(s+ 5) = αkP

5 (88)

which is the same condition as before. If we set α = 0.5 to a more “safe” value, then we need kP > 35.7.

Guessing β = 0.17 with root-locus allows us to pick the roots −6.58 ± 0.2356i with kP = 45.05, which meets DS2.
Therefore, our proposed values are

kP = 45.05, kI = 22.53, kD = 7.66 . (89)

As a quick sanity check, we need to make sure the system is stable. The plant is given by

G(s) = 1
s2 + 6s+ 5 (90)

so ωn =
√

5, ζ = 3/
√

5 = 1.34, and K = 1/5. Routh’s Stability Criterion gives

(2ζ + kDKωn)(1 + kPK)ωn
K

= (2 ∗ 1.34 + 7.55 ∗ 1/5 ∗
√

5)(1 + 45.05 ∗ 1/5)
√

5
1/5 = 677.8 > kI , (91)

so the system is stable.

The corresponding root-locus plot (for documentation purposes) is

10



Note that at the root around −6.6 ± 0.2i, there is a third root on the real-axis near s = 0. We are able to ignore this
pole, because it cancels out one of the zeros from the controller. This is allowed behavior since we are not cancelling out
any zeros from the plant, only the controller.

Listing 1: Code to Compute Design Specifications
1 %%% Define the transfer function
2 % kp(1+a/s) = kp s + a*kp / s
3 kp=45.049;
4 alpha=0.5;
5 beta=0.17;
6
7 C = tf([kp*beta kp kp*alpha],[1 0]);
8 G = tf(1, [1 6 5]);
9 sys = G*C/(1+G*C);
10
11 %%% Get Step Input Result
12 step_sys = feedback(sys, 1);
13 step_info = stepinfo(step_sys);
14
15 % Simulate the response to a step input
16 t = 0:0.01:20;
17 y = step(sys, t);
18
19 % Calculate the steady−state error
20 steady_state_value_step = y(end);
21 input_mag_step = 1;
22
23 %%% Get Ramp Input Result
24 % Simulate the response to the ramp input
25 t = 0:0.1:10;
26 ramp_input = t;
27 [y, t] = lsim(sys, ramp_input, t);
28

11



29 % Calculate the steady−state error
30 steady_state_value = y(end);
31 input_mag = max(ramp_input);
32
33 disp(DS1: Step SS Error=+abs(steady_state_value_step − input_mag_step)/input_mag_step)
34 disp(DS2: Ramp SS Error=+abs(steady_state_value − input_mag)/input_mag)
35 disp(DS3: Overshoot=+step_info.Overshoot)
36 disp(DS4: Settling time=+step_info.SettlingTime)

which gives us

DS1: Step SS Error=1.7317e-06
DS2: Ramp SS Error=0.22137
DS3: Overshoot=0
DS4: Settling time=0.40168

so everything is satisfied. Note that this is not the only solution. I can run a grid search algorithm to find the best solution
within a certain region:

Listing 2: Code to Perform Grid Search on Design Specifications
1 % Define the criteria
2 DS1_target = 0.01;
3 DS2_target = 0.28;
4 DS3_target = 5;
5 DS4_target = 1.5;
6
7 % Define the parameter ranges
8 kp_range = 10:1:50;
9 alpha_range = 0.3:0.05:0.7;
10 beta_range = 0.1:0.01:0.2;
11
12 % Initialize the minimum kp and the minimum DS4
13 min_kp = Inf;
14 min_alpha = Inf;
15 min_Beta = Inf;
16 % Loop over all possible combinations of kp, alpha, and beta
17 for kp = kp_range
18 for alpha = alpha_range
19 for beta = beta_range
20 % Calculate the DS1, DS2, DS3, and DS4
21 [DS1, DS2, DS3, DS4] = calculate_DS(kp, alpha, beta);
22
23 % Check if the criteria are satisfied and update the minimum
24 if DS1 < DS1_target && DS2 < DS2_target && DS3 < DS3_target && DS4 < DS4_target
25 if kp < min_kp
26 min_kp = kp;
27 min_alpha = alpha;
28 min_beta = beta;
29 end
30 end
31 end
32 end
33 end
34
35 % Print the minimum kp and minimum DS4
36 if min_kp == Inf
37 disp(No combination of parameters satisfies the criteria.)
38 else
39 disp(Minimum kp!: + min_kp)
40 disp(Minimum alpha: + min_alpha)

12



41 disp(Minimum beta: + min_beta)
42 end
43
44 [DS1, DS2, DS3, DS4] = calculate_DS(min_kp, min_alpha, min_beta)

which gives us

Minimum kp: 19
Minimum alpha: 0.95
Minimum beta: 0.1
DS1 = 1.1769e-11
DS2 = 0.2770
DS3 = 4.7056
DS4 = 0.9436

We can compute
kpα

5 = 3.61 > 3.57 (92)

as desired. Therefore, the optimal solution in this range is

(kp, kI , kD) = (19, 18.05, 1.9) . (93)

where we are optimizing for smaller gains, which although give the same behaviour, is desired in real applications because
there is less noise and it is more robust when actually implementing it (i.e. smaller voltages). Similarly, the system is
stable since

(2ζ + kDKωn)(1 + kPK)ωn
K

= (2 ∗ 1.34 + 1.9 ∗ 1/5 ∗
√

5)(1 + 19 ∗ 1/5)
√

5
1/5 = 189 > kI , (94)

so this is stable as well.

The function calculate_DS(kp, alpha, beta) is defined via the following code:

Listing 3: Function to Compute Design Specifications
1 function [DS1, DS2, DS3, DS4] = calculate_DS(kp, alpha, beta)
2 % Define the transfer function
3 C = tf([kp*beta kp kp*alpha],[1 0]);
4 G = tf(1, [1 6 5]);
5 sys = G*C/(1+G*C);
6
7 % Get Step Input Result
8 step_sys = feedback(sys, 1);
9 step_info = stepinfo(step_sys);
10 t = 0:0.01:20;
11 y = step(sys, t);
12
13 % Calculate the steady−state error for step input
14 steady_state_value_step = y(end);
15 input_mag_step = 1;
16
17 % Get Ramp Input Result
18 t = 0:0.1:10;
19 ramp_input = t;
20 [y, t] = lsim(sys, ramp_input, t);
21
22 % Calculate the steady−state error for ramp input
23 steady_state_value = y(end);
24 input_mag = max(ramp_input);
25
26 % Return DS1, DS2, DS3, and DS4 as outputs
27 DS1 = abs(steady_state_value_step − input_mag_step)/1;

13



28 DS2 = abs(steady_state_value − input_mag)/1;
29 DS3 = step_info.Overshoot;
30 DS4 = step_info.SettlingTime;
31 end

For transparency, GPT4 was used to assist in generating the grid search optimization.

14


