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1 MANIFOLDS AND TENSOR FIELDS

1 Manifolds and Tensor Fields
1.1 Review
Note: The manifold section should serve as a review from MAT367, so we will be quickly going over it.

Definition: An n-dimensional, C∞, real manifold M is a topological space together with a collection of subsets {Oα}
satisfying the following properties:

1. {Oα} cover M.
2. For each α there is a homeomorphism ψα : Oα → Uα, where Uα is an open subset of Rn.
3. If any two sets Oα and Oβ intersect, then ψβ ◦ ψ−1

α is smooth.
Note that there are a few extra conditions (Hausdorff and paracompact), but they generally aren’t important.

Let F denote the collection of C∞ functions from M to R.

Definition: Tangent vectors are maps v : F → R which satisfy:
1. Linearity: v(af + g) = av(f) + g
2. Leibniz’s rule: v(fg) = v(f)g + fv(g)

The commutator (Lie Bracket) of two tangent vectors [v, w] = v ◦ w − w ◦ v is also a tangent vector.

1.2 Tensors
Now, we can introduce the notion of tensors.

Definition: A (k, `) tensor over a vector space V is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
`

→ R

Some examples:

• A (0, 1)-tensor is a dual vector

• A (1, 0) tensor is an element of V ∗∗.

An interesting example is a (1, 1)-tensor, which is a map V ∗ × V → R. However, we can fix v ∈ V so V (·, v) is in V ∗∗. But
since V ∗∗ is canonically isomorphic to V, we have a linear map from V to V. Similarly, we can also view T as a map from
V ∗ → V ∗.

Let T (k, `) be the space of all (k, `)-tensors. There are two important operations on tensors:

1. Contraction: This is a map C : T (k, `)→ T (k − 1, `− 1), defined by

CT =
n∑
σ=1

T (. . . , vσ
∗
, . . . ; . . . , vσ, . . . ).

2. Outer product: Given a (k, `)-tensor and a (k′, `′)-tensor, the outer product is defined by

(T ⊗ T ′)(v1∗ , . . . , v(k+k′)∗ ; v1, . . . , v`+`′) = T (v1∗ , . . . , vk
∗
; v1, . . . , v`′)T ′(v(k+1)∗ , . . . , v(k+k′)∗ ; v`′+1, . . . , v`+`′).

One way to construct tensors is to take the outer product of smaller tensors, i.e. vectors and dual vectors. If this is possible,
then the tensor is simple. Let {vµ} be the basis for V and {vν

∗
} its dual basis. Then,

{vµ1 ⊗ · · · ⊗ vµk
⊗ vν

∗
1 ⊗ · · · ⊗ vν

∗
` }

forms a basis for T (k, `). Then every (k, `) tensor can be written as a linear combination,

T =
n∑

µ1,...,ν`=1
Tµ1···µk

ν1···ν`
vµ1 ⊗ · · · ⊗ vν

∗
` ,
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1.3 Abstract Index Notation 2 CURVATURE

where the coefficients Tµ1···µk
ν1···ν`

are known as the components of T. Note that it is often more convenient to work with
just the components. For example, when applying the contraction and outer product:

• Contraction: We have

(CT )µ1···µk−1
ν1···ν`−1 =

n∑
σ=1

Tµ1···σ···µk−1
ν1···σ···ν`−1 .

• Outer product: We have

(T ⊗ T ′)µ1···µk+k′
ν1···ν`+`′ = Tµ1···µk

ν1···ν`
T ′µk+1···µk+k′

ν`+1···ν`+`′ .

Theorem: The tensor transformation law says that

T ′µ
′
1···µ

′
k
ν′1···ν′` =

n∑
µ1,···ν`=1

Tµ1···µk
ν1···ν`

∂x′µ
′
1

∂xµ1
· · · ∂x

ν`

∂x′ν
′
`

.

Definition: A metric is a (0, 2)-tensor that is also:
• Symmetric: gµν = gνµ
• Nondegenerate: gµν = 0 only if µ = ν = 0.

We can write
g =

∑
µ,ν

gνµ dxµ ⊗ dxν

1.3 Abstract Index Notation

2 Curvature
How do we compare vectors in a curved space? We can’t simply add or subtract since they live in different tangent spaces. To
do so, we need to introduce a derivative operator.

Definition: A derivative operator ∇ on a manifold M is a map ∇ : T (k, `) → T (k, ` + 1), that satisfies the five
properties:

1. Linearity: For A,B ∈ T (k, `) and α, β ∈ R,

∇c(αAa1···ak
b1···b`

+ βBa1···ak
b1···b`

) = α∇c(Aa1···ak
b1···b`

) + β∇c(Ba1···ak
b1···b`

).

2. Leibnitz Rule:

∇e
[
Aa1···ak

b1···b`
Bc1···ck′

d1···d`′

]
= [∇eAa1···ak

b1···b`
]Bc1···ck′

d1···d`′ +Aa1···ak
b1···b`

[
∇eBc1···ck′

d1···d`′

]
.

3. Commutativity with contraction:

∇d(Aa1···c···ak
b1···c···b`

) = (∇dA)a1···c···ak
b1···c···b`

4. Consistent with tangent vectors. For all f ∈ F and ta ∈ Vp, we have:

t(f) = ta∇af

5. Torsion free:
∇a∇bf = ∇b∇af

We need to show a few important facts about this derivative operator:

• ∇ exists: To do so, pick local coordinates
{

∂

∂xµ

}
and {dxµ}. Then trhe ordinary derivative ∂a defined by:

∂a : Tµ1···µk
ν1···ν`

7→ ∂

∂xσ
Tµ1···µk

ν1···ν`

3



2 CURVATURE

• The derivative operator is almost unique. Given two operators ∇̃a and ∇a, their difference is characterized by the tensor
field Ccab, which is sometimes denoted as the Christoffel symbol Γbac when ∇̃a is the ordinary derivative oeprator. That
is,

∇atb = ∂at
b + Γbactc

Definition: A vector va given at each point on the curve is said to be parallelly transported as one moves along the
curve if the equation

ta∇avb = 0

is satisfied along the curve. In general, a tensor of arbitrary rank is parallelly transported if

ta∇aT b1···bk
c1···c`

= 0.

Consider a vector and choose a coordinate system. Then the above simplifies to:

ta∂av
b + taΓbacvc = 0 ⇐⇒ dvν

dt
+
∑
µ,λ

tµΓνµλvλ = 0.

A vector at a point p on the curve uniquely defines a parallel transported vector everywhere else on the curve. The mathematical
structure arising from such a curve dependent identification of the tangent spaces of different points is called a connection.

Theorem: Let gab be a metric. Then there exists a unique derivative operator ∇a satisfying ∇agbc = 0.

A direct corollary is that a metric gab naturally determines a derivative operator ∇a. In particular, we have:

Γcab = 1
2g

cd (∂agbd + ∂bgad − ∂dgab) ,

and the coordinate basis components are

Γρµν = 1
2
∑
σ

gρσ
(
∂gvσ
∂xµ

+ ∂gµσ
∂xν

− ∂gµν
∂xσ

)
.

Motivation to Curvature
Suppose we are on a riemannian manifold, i.e. the metric is positive definite. Consider a curve τ ∈ C1([0, 1]→Mn), then

L(τ)2 =
∫
g(τ ′(t), τ ′(t)) dt ,

and define the distance between x0 and x1 as

d(x0, x1)2 = inf
{
L(τ)2,

}
where τ(0) = x0 and τ(1) = x1. If τ attains this infinum, then L(τ + εσ) > L(τ) for all ε > 0 if σ(0) = σ(1) = 0. Then:

0 = d

dε
L(τ + εσ) ⇐⇒ τ̇ is parallel transported along τ,

where the connection is the Levi-Civita derivative,
τ̇a(t)∇aτ̇ b, (2.1)

which is known as the geodesic equation. In coordinates, recall that ∇AV b = ∂aV
b + ΓbacV c, so the geodesic equation

becomes
dτα

dt
∂α
dτB

dt
+ dτα

dt
Γbαγ

dτγ

dt
= 0, (2.2)

which is sometimes written as
d2τB

dt2
+ Γβαγ(τ(t))dτ

α

dt

dτγ

dt
= 0. (2.3)

If τβ(0) = xβ and dτβ

dt
(0) = V β , then the solution (locally) is

τ(t) = expx(tV ),

4



2 CURVATURE

where the exponential map is expx : TxM →M, 0→ x, defined by:

(x, V ) 7→ (x, expxV ).

We can think of the exponential function as expx0 tv0 tells us to go a distance t(v0)g in direction ~v0. The exponential map is
smooth, and locally and smoothly defined. If we identify (Tx0M, gx0) ≈ (Rn, δab), i.e. with the euclidean space and metric,
then we can call it the Riemannian normal coordinates at x0, which is a local coordinate chart at x0. Now consider two
curves τ(t) = expx(tW ) and σ(s) = expx sV with σ(0) = τ(0) = x. Therefore,

d2(σ(s), τ(0)) = s2, d2(σ(0), τ(t)) = t2,

which is true per the geodesic equation. If we taylor expand d2(τ(s), τ(t)) around (s, t) = (0, 0), then the cross terms are zero,
so

d2(σ(s), τ(t)) = |sV − tW |2 +O(|(s, t)|3)

= |sV − tW |2 − s2t2

3 R(v, w, v, w) +O(|(s, t)|5).

Here, R is the Riemannian curvature tensor. Therefore, curvature is just a way to describe higher order terms when computing
the distance.

Formal Definition of Curvature
Now we extend to a more usual definition of curvature, which also extends to vectors that cannot be parallelly transported.
Consider f ∈ F and ω ∈ T (0, 1) such that ∇[a∇b]f = 0. Then,

∇a∇b(fωc) = ∇a(ωc∇bf + f∇bωc).

The commutator relationship is then:
∇[a∇b](fωc) = f∇[a∇b]ωc.

The fact that f pulls through implies that this function can only depend on the value of ωc at p and not at any nearby points.
The most general linear thing that satisfies this is some arbitrary tensor

(∇a∇b −∇b∇a)ωc = Rdabcωd,

where Rdabc is the Riemann curvature tensor. We can write something similar for (∇a∇b −∇b∇a)V c. Here, V c ∈ T (1, 0) and
ωc ∈ T (0, 1). Therefore, we can contract the two together to get,

0 = (∇a∇b −∇b∇a)(V cωc)
= V cRdabcωd + ωd∇[a∇b]V d.

This gives us
∇[a∇b]V d = −RdabcV c.

By induction, we can show that if T ∈ T (k, `), then

∇[a∇d]T
b1···bk

c1···c`
= −

k∑
i=1

Rade
biT b1···e···bk

c1···c`
+

k∑
j=1

Radcj

eT b1···bk
c1···e···c`

.

The standard intuition behind this formulation is the failure to conserve a vector when taken under parallel transport around a
closed curve.

First recall that if Ua, Bv ∈ T (1, 0) and we want a vector field W such that [U, V ]c = W c, then

W (f) = U(V (f))− V (U(f))
= U b∇b(V a∇af)− V a∇a(U b∇bf)
= (Ua∇aV c − V a∇aU c)∇cf

Consider a surface S. Let’s attempt to parallel transport V a around a parallelogram (0, 0) → (∆s, 0) → (∆s,∆t) → (0, δt).
Let us fix ωb ∈ T (0, 1) and let us see how V aωa changes.
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2.1 Geodesics 2 CURVATURE

Define Sa =
(
∂

∂s

)a
and T b =

(
∂

∂t

)b
be coordinate tangent vectors to S. Note that [S, T ] = 0. Then,

δ1 = (∆s) d
ds

(vaωa)
∣∣∣∣
(∆s/2,0)

+O((∆s)3)

= (∆s)Sb∇b(vaωa)
∣∣∣∣
(∆s/2,0)

= (∆s)Sbva∆bωa
∣∣∣∣
(∆s/2,0)

Similarly,

δ3 = −(∆s)Sbva∇bωa
∣∣∣∣
(∆s/2,∆t)

.

However, the va in this last expression is the vector we get after being transported halfway across the parallelogram. But first,
note that

δ1 + δ2 + δ3 + δ4 = O((∆s)2 + (∆t)2),

so since the difference between the vectors at different points vary by second order, we can effectively ignore them. Therefore,

δ1 + δ2 + δ3 + δ4 = vnew − v0 = −SbT cRdbcav0

The Riemann tensor has some symmetries,

1. Rabcd = −Rbacd

2. R[abc]
d = 0.

3. If ∇agbc = 0, then Rabcd = −Rabdc.

4. ∇[eRab]c
d = 0 is the Bianchi identity.

We can prove these,

1. Rabcdωd = ∇[a∇b]ωc
2. Consider some form T[abc]. Then

∇[aTbcd]

is a form. But taking the derivative again
∇[a∇bTcde] = 0.

To see this, we can rewrite
∇[aTbcd] = ∂aTbcd + Γe[ab]Tecd + · · · .

Since the Γ are symmetric, then the Γ terms disappear, and we get ∂aTbcd. Therefore,

∇[a∇bTcde] = ∂[a∂bTcde] = 0.

3.

2.1 Geodesics
Let Σn+1 ⊆Mn be an (n− 1)-dimensional submanifold of M , i.e. a hypersurface. Then,

Rn−1 ≈ TpΣ ⊆ TpM ≈ Rn.

There are three cases for g

g

∣∣∣∣
TpΣ×TpΣ

> 0 ⇐⇒ Σ is spacelike at p,

which is alwys true for Riemannian metrics. For Lorentizn metrics,

det g|(TpΣ)2 = 0 ⇐⇒ Σ is null at p

g|(TpΣ)2 < 0 ⇐⇒ Σ is timelike at p.

6



2.2 Geodesic Deviation Equation and Jacobi Fields 2 CURVATURE

We claim that there exists a nonzero normal vector N ∈ TpM such that g(N,X) = 0 for all X ∈ TpΣ. Note that N won’t be
null, i.e. N /∈ TpΣ (except possibly in case 2). Therefore WLOG,

g(N,N) = ±1

except of course in case 2.

Gaussian Normal Coordinates near Σ Let X = (x1, . . . , xn−1) be any coordinates on a neighbourhood of p in Σ. Then,

(x1, . . . , xn−1, t) ∈ R 7→ expX=(x1,...,xn−1) tN ∈M

gives coordinates in a neighborhood of Σ. Notice that

NaNa = ±1

and for all Xb ∈ TqΣ0, we have
g(N,X) = NaX

a = 0.

Claim: The geodesic t ∈ R→ expX tN remains orthogonal to Σt for all small t.

Proof. The tangent vectors

Xa
i =

(
∂

∂xi

)a
for i ∈ {1, . . . , n− 1} form a coordinate basis for TpΣt, and N b =

(
∂

∂t

)b
denotes the tangent to the geodesic. Recall,

[
N,X(i)

]a = 0.

This is equivalent to
T b∇bXa = Xb∇bT a,

for X ∈ {X1, . . . , xn−1}. We then claim that
NaXa = 0,

for all |t| � 1. Its derivative along the geodesic is

N b∇b(NaXa) =���
��(N b∇bNa)Xa +NaN b∇bXa

= NaX
b∇bNa

= 1
2X

b∇B(NaNa)

= 1
2X

b∇B(±1)

= 0.

2.2 Geodesic Deviation Equation and Jacobi Fields
Let t ∈ I ⊆ R→ σ(t) ∈M be a geodesic. Now consider a surface

(s, t) ∈ B1(0) ⊆ R2 → σs(t) = σ(t; s) ∈M

formed by geodesics t ∈ Is ⊆ R→ σs(t), i.e.
σ̇as∇aσ̇s = 0.

If we have a geodesic, we can re-parametrize it. That is, σ(bt+ c) is also a geodesic. If σ depends on s, then σs(b(s)t+ c(s))
is also a geodesic. We have some freedom to choose b(s) and c(s). Let us choose b(s) such that

σ̇aσ̇a = ±1.

We can also choose c′(0) so that

σ̇aXa

∣∣∣∣
σ0(0)

= 0.

7



2.3 Computing the Riemann Tensor 2 CURVATURE

Finally, we can choose Xa =
(
∂

∂s

)a
and c(s) such that

σ̇aXa

∣∣∣∣
σs(0)

= 0.

As before, σ̇b∇b(σ̇aXa) = 0. Therefore, Xa remains orthogonal to σ̇ along σ0(t) for all t, which is a result we’ve seen before.

We can linearize the geodesic equation around σ0(t) to get a linear 2nd order equation for Xa. That is, we can compute the
velocity

va = σ̇b∇bXa

aa = σ̇c∇cva

of a nearby geodesic relative to σ0(t). We can rewrite,

aa = σ̇c∇c
(
σ̇b∇bXa

)
,

which includes two derivatives. Recall that the order of derivatives matter and if we want to switch the order, we need to
include curvature. Note that since [σ̇, X] = 0, we can rewrite,

aa = σ̇c∇c
(
Xb∇bσ̇a

)
= σ̇c(∇cXb)∇bσ̇b +Xbσ̇c∇c∇bσ̇a

= (Xc∇cσ̇b)∇bσ̇a +Xbσ̇c∇b∇cσ̇a −Racbdσ̇dXbσ̇c

= −Racbdσ̇dXbσ̇c.

Note that a is linear in X, so this is the linear second order equation we wanted. In coordinates, this becomes,

d2

dt2
Xα +Rαγβδσ̇

γ σ̇δXβ = 0.

The initial conditions are Xα(0) = Xα
0 and Ẋα(0) = V α0 . There are n choices for both, so 2n degrees of freedom. Note that

2 of them correspond to the affine reparametrization of σ0(t).

Solutions Xα(t) along σc(t) are called Jacobi Fields.

2.3 Computing the Riemann Tensor
How do we compute Rdabc? There are different methods to do so, but we begin with the coordinate method. Given a tensor
field ωd ∈ T (0, 1), then

1
2R

d
abcωd = 1

2(∇a∇b −∇b∇a)ωc

= ∇[a∇b]ωc.

In local coordinates,
∇aωb = ∂aωb − Γcabωc.,

and we can write it in a more useful form,
Dbωc = ∂bωc − Γdbcωd.

We have,

∇a∇bωc = ∂a(∂bωc − Γdbcωd)− Γeab
(
∂eωc − Γdecωd

)
− Γeac

(
∂bω` − Γdbeωd

)
=⇒ ∇[a∇b]ωc = −∂[aΓdb]cωd + Γec[aΓdb]eωd.

Therefore,
Rαβγ

δ = − ∂

∂xα
Γδβγ + ∂

∂xβ
Γδαγ + ΓεγαΓδε − ΓεγβΓδαε.

There are different types of curvature tensors. We have the Ricci curvature,

Rac = Rbabc

and the scalar curvature R = Raa = Racg
ca.

8



2.4 Twice Contracted Identity 2 CURVATURE

2.4 Twice Contracted Identity
Starting from the Bianchi identity, we can expand it:

0 = 2∇aRbcde + 2∇bRecad + 2∇cReabd.

Contracting on c, e gives
∇aRbd −∇bRad +∇eReabd,

and contracting it by ad (i.e. multiplying by gad) gives

0 = ∇aRba −∇bRaa +∇eRbe

= 2
(
∇aRba −

1
2∇bR

)
= 2∇a

(
Rab −

1
2Rgab

)
,

where Gab ≡ Rab−
1
2Rgab is often known as the Einstein tensor, and the twice contracted identity tells us that it is divergence

free, which gives us a conservation law.

Recall that we can write,

0 = ∇ava

= ∂va

∂xa
+ Γaabvb.

We can write out an explicit formula for the contracted Christoffel symbols:

Γaab = 1
2g

ad

(
∂gdb
∂xa

+ ∂gad
∂xb

− ∂gab
∂xd

)
= 1

2

(
∂gbd
∂xd

+ gad
∂gad
∂xb

− ∂gab
∂xa

)
= 1

2g
ac ∂

∂xb
gac.

Alternatively,

Γaab = 1
2
∂

∂xb
log |g|

= 1
2
∂

∂xb

n∑
i=1

log |λi|

= 1
2

1
λi

∂λi

∂xb

= 1
2g

ac ∂

∂xb
gac

where |g| = |det gij |.

2.5 Differential Forms
Let ∇a be a connection on M. We can define the derivative operator

d : Λp(M)→ Λp+1(M)

by
ωa1...ap

7→ ∇[bωa1...ap]

which we can expand to

∇[bωa1...ap] = ∂

∂xi
ωa1...ap

+
p∑
i=1

Cc[bai
ωa1...|c|...ap

.
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2.5 Differential Forms 2 CURVATURE

But this last term is zero, so d only depends on the differential topology of the manifold, and not its differential geometry. It
is independent of the connection choice! Therefore, we often denote the derivative of ω as dω.

Note that ω ∈ Λp(M) is closed when dω = 0 and ω is exact when it can be written as ω = dη .

The manifold M is orientable if and only if there exists an ε ∈ Λn(M) that is continuous non-vanishing. If α ∈ Λn(M) and
M is oriented (by ε) then ∫

M

α

is defined locally in charts and globally by partitions of unity, and is independent of coordinates on the chart.

However, things become spicy once we bring a metric into play. A pseudo-Riemannian metric g on Mn selects a preferred
volume form ε (up to a sign (orientable)). This is to ensure

εa1...anεa1...an
= (−1)sn!

Many nice things follow from this. In right-handed coordinates on U ⊆M, we have

ε→
√
|g|dx1 ∧ · · · dxn ,

where |g| = |det gαβ | in some coordinates. Let:

gµν = g

(
∂

∂xµ
,
∂

∂xν

)
,

and consider the change of basis
∂

∂xµ̄
= ∂xµ

∂xµ̄
∂

∂xµ
= Λµµ̄

∂

∂xµ
.

Then,

gµ̄ν̄ = ∂xµ

∂xµ̄
∂xν

∂xν̄
g

(
∂

∂xµ
,
∂

∂xν

)
= Λµµ̄Λνν̄gµν ,

where the Λ are Jacobians. Then,
|ḡ|1/2 = |det Λ||g|1/2,

is how the determinant of the metric changes wrt coordinates.

allows for the reduction to the Standard Stoke’s Theorem via integration by parts.

Lemma 1: If the derivative ∇a and volume form ε are compatible with gba then U is a subdomain U ⊂⊂Mn implies∫
U

f(∇aV a)ε =
∫
∂U

(fV ana) dA−
∫
U

(∇af)V aa ε,

where na is an outer normal forma. If f ∈ C1(U) and V ∈ T (1, 0) is c1.
aFor example if U = {x ∈ M,φ(x) < 0} with |dφ| = 1, then we can identify n = dφ

Proof. Assume a coordinate chart ψ covers U . Then, we can integrate,

−
∫
U

f(∇aV a)ε = −
∫
ψ(U)

f

(
∂V α

∂xα
+ ΓααβV β

)
√
g dx1 ∧ · · · ∧ dxn

= −
∫
ψ(U)

f

(
∂V α

∂xα
√
g + V β

|g|1/2
∂|g|1/2

∂xβ

)
dx1 ∧ · · · ∧ dxn

= −
∫
ψ(U)

f
∂V α

∂xα
|g|1/2 + fV β

∂|g|1/2

∂xβ
dx1 ∧ · · · ∧ dxn ,

= +
∫
ψ(U)

V α
∂

∂xα
(f√g) + ∂(fV α)

∂xα
√
gdnx− 2

∫
∂ψ(U)

fV α
√
gnαdn−1x

=
∫
ψ(U)

∂

∂xα
(V αf√g) + (∂αf)V α√gdnx− 2

∫
∂ψ(U)

fV α
√
gnαdn−1x.

10



3 STRESS ENERGY TENSOR

Which gives

−
∫
∂ψ(U)

(f√g + V αnα)dn−1x+
∫
ψ(U)

(∂αf)V α√g dxn ,

which is the same thing as what we want in our lemma.

Note that the reason there is an extra √g term is because of the minkowski capacity,

Area(Σ) = lim
ε→0

vol(Uε − U0)
ε

,

and the volume will have a √g factor, so we need to add this to the area when we work with coordinates.

3 Stress Energy Tensor
In Euclidean geometry R3, we have hµν = diag(1, 1, 1), which implies that Γµαβ = 0, so the covariant derivative agrees ∇µ = ∂µ,

geodesics are straight lines, and parallel transport is curve independent. In R4 in special relativity, we have

ηµν = diag(−1, 1, 1, 1),

and the Christoffel symbols vanish, etc. Although there is no inertial frame, there is still a future direction and orientation.
Consider the (Mn, gµν) Lorentzian manifold:

• At each point, we have a lightcone, and we can decide the future direction in a consistent way (orientable).

• Massive particles, absent other forces, follow timelike geodesics, parametrized such that

g(σ′(s), σ′(s)) = −1

• The 4-velocity is
Ua = dσa

ds

and the 4-momentum is
P a = mUa.

• The energy of our particle, measured by a non-comoving observer at the same point in spacetime M, is

Ũ bpb = gab(Ũ b, pa),

where Ũ b is the 4-velocity of observer.

• Ũ and U makes an angle of θ with each other. Note that

tanhψ = v = tan θ,

so we can write the energy as
Ũ bpb = m coshψ = m√

1− |v|2
,

where |v| is the relative 3-velocity.

• If gabX̃aŨ b = 0, then the momentum in the X̃a direction is gabX̃apb = mv√
1− |v|2

.

Something else that is affected by boosts is number density. Consider N particles at rest and draw some box with volume r3

in the x, y, z direction. The density is
n = N

r3 .

In a moving reference frame, the Lorentz boost, the particles are now moving at some relative velocity (v, 0, 0) in the x-direction.
The density now becomes

n̄ = n

γr3 ,

11



3 STRESS ENERGY TENSOR

due to length contraction, so density transforms like the first component of a 4-vector. We can treat this as a 4-vector, where
the other 3 directions are the fluxes. The number flux vector is

Na comoving−−−−−→ (n, 0, 0, 0)
x-boosted−−−−−→ (n/

√
1− |v|2, nv√

1− |v|2
, 0, 0)

boosted−−−−→

(
n/
√

1− |v|2, nv1√
1− |v|2

,
nv2√
!− |v|2

,
nv3√

1− |v|2

)
.

Note that the number of particles is observer independent, i.e.

n2 = gab(Na, N b),

where n is the scalar rest density and is the first component of Na in comoving coordinates.

This motivates the question of what the energy density of these particles might look like. The energy density is the energy per
particle times the density of the particles, i.e.

comoving−−−−−→ mn

x-boosted−−−−−→ mn

1− |v|2 .

This transforms like a (2, 0) tensor T ab = P a ⊗N b. This motivates us to write,

T ab
comoving−−−−−→


mn 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



x-boosted−−−−−→


mn

1− v2
mvn

1− v2 0 0
mvn

1− v2
mnv2

1− v2 0 0
0 0 0 0
0 0 0 0


which is the energy momentum tensor for dust. More generally, T ab is the stress-energy tensor of matter, with the following
properties

• The energy-density observed by observer having velocity v is

Tabv
avb

• If gab(Xa, V b) = 0, Then the energy flux of matter in Xb direction is

Tabv
aXb

and
TabX

avb

is the Xa momentum density, and
TabX

aY b

is the Xa momentum flux in the Y b direction, where gab(Xa, Y b) = gab(V a, Y b) = 0.

Lemma 2: The stress-energy tensor is symmetric, i.e. T ab = T ba.

Proof. Note that T a0 is the Xa momentum density and T 0a is the energy flux in the xa direction. These are the same quantity,
so

T a0 = T 0a.

12



3.1 Perfect Fluids 3 STRESS ENERGY TENSOR

To show that T ab = T ba for a, b 6= 0, we can use a rotation argument. Consider small volume cuboid elements. The torque in
one direction is created by contributions from four sides. For example, the z torque is given by(

T xy
∣∣∣∣
y=−r

r2 + T xy
∣∣∣∣
y=r

r2

)
−

(
T yx

∣∣∣∣
x=−r

r2 + T yx
∣∣∣∣
x=r

r2

)
.

The zz momentum of inertia scales like r5. The angular acceleration is a ratio, and to prevent diverging for small r, we evaluate
at y = 0 + r3 ≈ 0 instead, and we get

T xy = T yx

in order to prevent infinite acceleration.

3.1 Perfect Fluids
Perfect fluids have no viscosity (no heat conduction), so there is no shear force. Therefore, Tαβ = 0 for all α 6= β ∈ {1, 2, 3}
spacelike indices. Since there is no heat conduction, heat (energy density) can only be transported in the direction of the fluid,
i.e.

Tα0 = 0∀α ∈ {1, 2, 3}.

In a special relativity frame, we have

T ab
SR−−→


T 00 0 0 0
0 T 11 0 0
0 0 T 22 0
0 0 0 T 33



−→


ρ(x, y, z, t) 0 0 0

0 P (x, y, z, t) 0 0
0 0 P 0
0 0 0 P

 .

The stress energy tensor is also divergence free, which is the statement that energy and momentum is conserved locally. Note
that in special relativity,

• T00 is the energy density

• T0i is the energy flux in the i direction

• Ti0 is the i-momentum density

• Tij is the flux of momentum in the j direction.

Consider an imaginary cube. The flux through the 6 faces of the cube is given by

∂

∂t

∣∣∣∣
(0,0,0)

(T 00L3) = −
(
T 01
∣∣∣∣
(L,0,0)

− T 01
∣∣∣∣
(0,0,0)

)
L2

L
−

(
T 02
∣∣∣∣
(0,L,0)

− T 02
∣∣∣∣
(0,0,0)

)
L2

L
−

(
T 03
∣∣∣∣
(0,0,L)

− T 03
∣∣∣∣
(0,0,0)

)
L2

L
,

which gives, after taking the limit L→ 0,

∂T 00

∂t
+ ∂T 01

∂x
+ ∂T 02

∂y
+ ∂T 03

∂z
= 0, (3.1)

which is the equation for conservation of energy. Similarly, conservation of momentum can be written as

∂T j0

∂t
+ ∂T j1

∂x
+ ∂T j2

∂y
+ ∂T j3

∂z
= 0. (3.2)

More generally, we can write that
∇aT ab = 0.

Note that we can write

T ab = (ρ+ P )UaU b + Pgab

Tab = (ρ+ P )UaUb + Pgab.

13



3.2 Klein-Gordon Wave Equation 3 STRESS ENERGY TENSOR

Taking the covariant derivative, we have

0 = ∇aT ab = U b∇a(ρUa) + ρUa∇aU b + P
(
U b∇aUa + Ua∇aU b

)
+ (gab + UaU b)∇aP

= U b (∇a(ρUa) + P∇aUa) + (ρ+ P )Ua∇aU b + (gab + UaU b)∇aP.

Contracting with U b (note: U bUb = −1) in order to get the motion in a particular direction,

0 = −1 [∇a(ρUa) + P∇aUa] +
���

���
���

�1
2(ρ+ P )Ua∇a(U bUb) +(((((

(((Ua − Ua)∇aP ,

which gives us

0 = ∇a(ρUa) + P∇aUa = Ua∇aρ+ (ρ+ P )∇aUa

0 = (ρ+ P )Ua∇aU b + (gab + UaU b)∇aP.

How do we interpret this? In SR, gab = ηab and ∇a = ∂a, and ρ� P for |v| � 1. Then,

0 = ∂ρ

∂t
+ (~v · ~∇)ρ+ ρ

(
~∇ · ~v

)
= ∂ρ

∂t
+ ~∇ · (ρ~v) ,

which gives us the continuity equation. We can also recover Netwon’s second law, for b = 1, 2, 3.

ρ

(
∂U b

∂t
+ (~v · ~∇)U b

)
= −∂bP.

Together, they form the 3D compressible Euler equations for fluids. We have five unknowns here, ρ, U1, U2, U3, P, and four
equations. We can get a fifth equation by getting an equation of state (i.e. ideal gas law).

Idea: For dust, we have P = 0, which gives

0 = ∇a(ρUa)
0 = ρUa∇aUa.

The first condition is the continuity condition (density is transported by velocity), and the second condition tells us that
the dust particles follow geodesics.

3.2 Klein-Gordon Wave Equation
For φ : M → R, the Klein-Gordon wave equation is

∇a∇aφ−m2φ = 0,

which can be written as (
− ∂2

∂t2
+ ∆

)
φ−m2φ = 0.

Sometimes, we write
−� = − ∂2

∂t2
+ ∆.

This comes from conservation of energy/momentum frmo the following stress energy tensor.

T ab = ∇aφ∇φ − 1
2g

ab
(
∇cφ∇cφ+m2φ2)

Contracting it with ∇a gives

0 = ∇aT ab = (∇a∇aφ)∇bφ+∇aφ(∇a∇aφ)− 1
2g

ab
(
∇a∇cφ∇cφ+∇cφ∇a∇cφ+ 2m2φ∇aφ

)
0 = (∇a∇aφ−m2φ)∇bφ+∇aφ(∇a∇bφ)− 1

2
(
∇b∇aφ∇aφ+∇cφ∇b∇cφ

)
.

By the torsion free condition, we get the desired wave equation.
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3.3 Maxwell’s Equations 3 STRESS ENERGY TENSOR

3.3 Maxwell’s Equations
We can write the Faraday tensor as

Fab = F[ab] =


0 E1 E2 E3
−E1 0 B3 −B2
−E2 −B3 0 B1
−E3 B2 −B1 0


Maxwell’s equations are very simple in this notation. Namely,

∇aFab = −4πJb
∇[aFbc] = 0,

where Jb is the charge/current density four-vector. First, we can check that Jb is divergence free. Note that

∇bJb = − 1
4π∇

b∇aFab

− 1
4π∂a∂bF

ab

= 0,

which tells us that current is the flux of the charge density. The second relationship tells us that locally, we can write

Fab = ∇aAb −∇bAa,

where A is a four-vector, known as the vector potential. Plugging this into the first relationship gives

∇a∇aAb −∇b∇aAa −RaabcAc = −4πJb.

Notice that we can write Aa = A′a +∇aχ (choosing the Lorentz gauge). Then we can show, with some work, that

∇aAa = ∇aA′a +∇a∇aχ.

We can choose ∇a∇aχ = ∇aAa to make ∇aA′a = 0. Therefore, our conservation law gives

∇a∇aAb −RbcAc = −4πJb.

How will charges move in these fields? The answer is that the acceleration is given by

ua∇aub = q

m
F bc u

c,

and corresponds to Newton’s second law.

3.4 Lorentz Gauge
In special relativity, the Lorentz gauge seeks solutions

Ab = Cbe
iS(t,x,y,z),

where Cb is a constant, i.e. parallel transport. Plugging this into the wave equation in the absence of charges, i.e. ∇a∇aAb = 0.
Then,

∂aAb = Abi∂aS

∂a∂aAb = Ab (−∂aS∂aS + i∂a∂aS) .

For this to vanish, both the real and imaginary components need to vanish, i.e.

∂aS∂aS = 0 = ∂a∂aS.

Similarly, ∇bAb = 0 gives
Cb∇bS = 0.
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3.5 Relating Geometry to Physics 3 STRESS ENERGY TENSOR

Let ka = ∇aS. Then kaka = 0 is a null vector orthogonal to Cb. Then the surfaces

Σλ := {x : S(x) = λ}

are null surfaces. In fact ka is both normal and tangent to Σ and its integral curves. In particular, ∇aS is a vector field and
its integral curves φ(t, x) solve 

∂φα

∂s
= gαβ∇βS (φ(s, x))

φα(s, x) = xα.

To show that they stay on the same level set, we can plug φ into S and take the derivative. We can compute,

d

ds
S(φ(s, x)) = ∇aS

∂φα

∂s

= ∇αSgαβ∇βS
= 0.

Moreover, these integral curves are null geodesics, because

0 = ∇b(∇aS∇aS)
= 2∇b∇aS∇aS
= 2∇aS∇a∇bS
= 2∇aS∇a∇cS
= 2ka∇akc

where the third line follows from torsion free-ness, and

kc = gca∇aS

is tangent to the integral curve
ad− kckc = ∇aS∇aS = 0.

3.5 Relating Geometry to Physics
For a manifold (Mn, gij), there is a tensor (Einstein tensor)

Gab = Rab −
1
2gabR,

that satisfies ∇aGab = 0. But from physics, we know there is another tensor that satisfies

∇aTab = 0.

For Maxwell, this tensor is
Tab = 1

4π
(
FacF

c
a − gabFcdF cd

)
,

where ∇aTab = 0 if Jb = 0. Note that more generally, we need to take the stress energy of charges + currents to get the more
general statement.

The brilliant idea of Einstein was that maybe these are the same things. The Einstein Field equations says geometry = physics,
and says

Gab = αTab,

for some constant α. We want to show that α = 8π. To show this, we can compare the geodesic variation equation (which
gives us the acceleration of a nearby geodesic)

Ua∇a(U bvbXd) = −RabcdUaU cXb,

to Newton’s second law, which gives
F = ma = −( ~X · ~∇)~∇φ,

where the potential φ is ∆φ = 4πρ, which can be rewritten as

F = −Xb∂b∂
dφ,
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4 PHYSICS

where ∂b∂d is the Hessian, and also has trace 4πρ. The Hessian is a part of the Riemann tensor Rabcd. Contracting by Rbd
gives

4πρ = ∆φ = RacU
aU c,

so we can guess that
Rac = 4πTac,

but the right side is divergence free. We can rearrange

Gab = Rab −
1
2Rgab

Rac = Gac −
!
2Ggac,

Noting that RabUaU b ∼ 4πρ, we get

4πρ = (Gab −
G

2 gab)U
aU b

α

(
Tab −

T

2 gab
)
UaU b

= α (ρ+ T/2)

= α

ρ
2,

which eventually gives us α = 8π. Therefore, Einstein’s equation is

Gab = 8πTab.

4 Physics
4.1 Linearized Gravity
Suppose we are given Tab. Then we can find gab. Recall that,

Γabc = 1
2g

ad (∇bgcd +∇cgbd −∇dgbc) ,

where the derivatives are linear in g, but multiplying it by gad makes it nonlinear. Furthermore,

Rabc
d = −∂[aΓb]cd + Γec[aΓb]ed.

These are very hard equations to solve as they are nonlinear. One of the first things we’ll do is linearize gravity (i.e. weak
gravity). We take,

gab = ηab + γab,

where ηab is Minkowski metric and γab is some small variation. Its solutions correspond to gravitational waves. We can write

gαβ = ηαβ + λγαβ +O(λ2).

More generally, given (M, gab(s)) and a 1-parameter group

φs : M →M

of diffeomorphisms, then (M, gab(s)) and (M,φ∗s(gab(s))) will present equivalent theories. Therefore, we can (without loss of
generality), set

γab := ∂gab
∂s

∣∣∣∣
s=0

.

and

γ̃ab = ∂

∂s

∣∣∣∣
s=0

(φ∗s(gab(s)))

= ∂gab
∂s

∣∣∣∣
s=0

+ L−vgab

= γab − L+vgab.
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Now, we can compute,

Lvgab = vc∇cgab + gad∇bvd + gdb∇avd.

Using the Levi-Civita connection, we have vc∇cgab = 0, which gives

γ̃ab = γab −∇bva −∇avb.

This says that in linearized gravity, if we take any γab and disturb it to get γ̃ab, then we get an equivalent theory, as expected.
Therefore, we pick

gab = ηab + γab,

where to first-order in γab, we have
gab = ηab − γab,

and

Γcab = !
2η

cd(∂aγdb + ∂bγad − ∂dγab)

Γccb = 1
2 (∂cγcb + ∂bγ − ∂cγcb) = 1

2∂bγ,

where γ = γaa . Then, we have
Racb

d = −2∂[aΓdc]b
and

Rab = Rcacb = ∂cΓcab − ∂aΓccb

= 1
2 (∂c∂aγcb + ∂a∂bγac − ∂c∂cγab − ∂a∂bγ) ,

so
∂c∂cγ = �γ =

(
− ∂2

∂t2
+ ∆

)
γ.

4.2 Homogeneous Isotropic Universe Models
For a homogeneous, isotropic universe, we have the FLRW tensor,

ds2 = −dτ2 + a(τ)2 ×


dΨ2 + sin2 Ψ(dθ2 + sin2 dφ2) k = 1
dΨ2 + Ψ2(dθ2 + sin2 dφ2) k = 0
dΨ2 + sinh2 Ψ(dθ2 + sin2 dφ2) k = −1

, (4.1)

where k is the curvature. For the k = 0 case, we can compute,

Rττ = −3 ä
a

Rxx = aä+ 2ȧ2

R∗∗ = aä+ 2ȧ2

a2 ,

We can compute the Ricci tensor to be,

R = −Rττ + 3R∗∗ = 6
(
ä+ ȧ2

a2

)
. (4.2)

The einstein tensor is given by,

Gab = Rab −
1
2Rgab = 8πTab = 8π ((ρ+ P ) dτa dτ b + Pgab)

Gττ = −3äa
a2 + 3

(
äa+ ȧ2

a2

)
= 3ȧ2

a2 = 8πρ

G∗∗ = aä+ 2ȧ2

a2 − 3
(
äa+ ȧ2

a2

)
= 8πP.
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4.3 Hubble’s Law 4 PHYSICS

This gives two equations,

ȧ2 = 8π
3 ρa2 − k

ä

a
= −4π

3 (ρ+ 3P ) ,

where the k is the curvature. From the second equation, we immediately know that a is concave. This is important as it means
in future time, the universe will either continue expanding, or expand and then contract. We can also go back in time, and see
that there will be some time such that a = 0. Hubble’s Law tells us that

dR

dτ
= R

a

da

dτ
= RH(τ). (4.3)

Recall that we only care about dust, in which P = 0 and for radiation, where P = ρ/3, and density is a function of time. Let’s
integrate! The derivative of the first equation is

2äȧ = 8π
3
(
ρ̇a2 + 2ρaȧ

)
=⇒ − 8π

3 aȧ (ρ+ 3P ) = 8π
3
(
ρ̇a2 + 2ρaȧ

)
=⇒ 0 = ρ̇a2 + 3aȧ(ρ+ P ).

For dust, this simplifies to
0 = 1

a

d

dτ
(ρa3) (4.4)

and for radiation, we have,
0 = 1

a

d

dτ
(ρa4). (4.5)

This tells us that,

• Dust: ρa3 = C1

• Radiation ρa4 = C2

So ρ and a are inversely proportional (to some exponent). Therefore, radiation energy dominates in the early universe and as
a(τ)→∞, dust energy will dominate. Therefore, we have,

ȧ2 = Cq
aq
− k, (4.6)

where q ∈ {1, 2} depending on whether we have dust or radiation. Note that if k ≤ 0, we have a continuous expansion, ȧ 6= 0
and after a long time, the rate of expansion will approach −k. If k = 1, then the universe expands to a maximum ac, then
reverses the process ending in a big crunch.

If k = 0 we can solve this to get

a(τ) =
(
q + 2

2
√
Cqτ

)2/(q+2)
,

which scales like τ2/3 for dust and τ1/2 for radiation. For k = 1, we have

• Dust: a(τ) = c1
2 (1− cos η)

• Radiation: a(τ) =
√
c2

[
1−

(
1− τ
√
c2

)2
]1/2

4.3 Hubble’s Law

Photons follow null geodesics with tangent vector nb. Suppose that k = 0. Then, ∂

∂x
,
∂

∂y
,
∂

∂z
are killing vector fields. Without

loss of generality, assume

nb

(
∂

∂y

)b ∣∣∣∣
Σd

= 0 = nb

(
∂

∂z

)b ∣∣∣∣
Σ1

. (4.7)
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Since the dot product of nb with a tangent vector of a Killing field is preserved, we have

nb

(
∂

∂y

)b ∣∣∣∣
Σ2

= 0 = nb

(
∂

∂z

)b ∣∣∣∣
Σ2

,

and nb

(
∂

∂xb

)b
is proportional to the energy. Since we have photons, the dot product using the time-like vector and the

space-like vector givs the same thing. Including the proportionality factor, we have

E = 1
a(τ) · nb

(
∂

∂xb

)b
= 1
√
g
· nb

(
∂

∂xb

)b
.

For our photon,

ω(τ)a(τ) = nb

(
∂

∂x

)b
= const,

or
a(τ2)
a(τ1) = ω(τ1)

ω(τ2) = λ2

λ1
.

So if a photon has a small wavelength (and high energy) when the universe was small, then it will have a long wavelength (and
a low energy) when the universe is big. This describes redshift, and is quantified by

z = λ2

λ1
− 1

= a(τ2)
a(τ1) − 1

≈ a(τ1) + a′(τ1)(τ2 − τ1)
a(τ1) − 1

= a′(τ1)
a(τ1) (τ2 − τ1)

= H(τ)R,

where R is the distance between nearby galaxies, since we used a Taylor approximation.

4.4 Particle Horizons
This prompts the question: Looking back in time, can we see the whole big bang, or just part of it?

Lightcones are invariant under conformal factors. Conformal factors are functions of the metric that preserve the dot product.
So for k = 0, the FLRW metric has some the same lightlike surfaces as Minkowski space. Then the question becomes whether
the integral

t =
∫ τ

0

ds
a(s)

diverges or converges. If it diverges, then going to a finite τ (i.e. in Minkowski space) gives us to an infinite t (i.e. allowing us
to see the whole big bang). If it converges, then we can only see a finite part of the universe’s past. This converges for both
dust and radiation. We can only see stuff inside the particle horizon, and this grows as time progresses. Therefore, as time
progresses, we can see more and more of the universe’s past.

It turns out that if k = 1 and we are in a universe dominated by dust, then we can see the big bang at the maximum size of
the universe. If we are in a universe dominated by radiation, we can see the big bang at the big crunch.

4.5 Schwarzschild Solution
The Newtonian potential for a point source is

u(x) = − m

|x|n−2

in n dimensions, where ∆u = 0. We seek a vaccuum solution to Esintein’s equation

Rab = 8πTab = 0,

(except maybe at a point). We are also seeking a solution with a lot of symmetries.
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• We call (Ma, gab) stationary if gab admits a Killing vector field ξc.

This implies that we have time translation symmetry, so t→ t+ δt should give the same metric.

• It is static if in addition, ξc is hypersurface orthogonal (ξ[a∇bξc]).

This implies time reflection t→ −t symmetry.

• It is spherically symmetric if SO(3) generates a group of isometries on it.

The spherically symmetric condition tells us that there are three other spatial killing vector fields, so the orbit of x traces
out a two-dimensional sphere S2 on the hyperplane at t = 0 with a radius

r ∝
√
A.

They also rule out cross terms like dr dθ because if their components were nonzero, then the projection onto the 2-sphere
would have a nonzero direction, but the action of SO(3) rotation on any point gives a 2-sphere with no preferred direction.

The metric is therefore
ds2 = −f(r) dt2 + h(r) dr2 + r2 (dθ2 + sin2 θadφ2) .

Tetrad methods: Choose an orthonormal basis for each TpM for each p ∈M. Consider an orthonormal basis ẽµ = (eµ)a for
µ ∈ {0, 1, 2, 3}. Consider,

ω̃µν ≡ ωaµν ≡ (eµ)b∇a(eν)b,

which are known as the Connection 1-forms. By orthonormal, we mean that

(eµ)a(eν)a = ηµν .

and we can write,
δab = ηµν(eµ)a)eν)b.

Proof. Contract with (eσ)b to get

(eσ)a = ηµν(eµ)aηνσ
= (eσ)a.

The connection 1-forms are a lot like the Christoffel symbols but are antisymmetric in terms of its indices, i.e.

ω̃µν = −ω̃νµ.

The Riemann tensor can be written as,

R̃νµ = Rνabµ = dω̃νµ + dω̃σµ ∧ ω̃σν ,

where ηµν is used to raise and lower greek indices. The derivative of the basis 1-forms is given by

dẽµ = ẽσ ∧ ω̃µσ.

Idea: We have not justified why these are true, but if we assume they are, we can use the above two formulas to find
what the connection 1-form is, and what the Riemann curvature tensor is. We will try to justify the formula

R̃νµ = dω̃νµ + ω̃σµ ∧ ω̃νσ.

Recall that

Rabµν = Rabc
d(eµ)c(eν)d

= (eµ)c(∇a∇b −∇b∇a)(eν)c.
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The first term can be written as,

(eµ)c∇a∇b(eν)c = ∇a ((eµ)c∇b(eν)c)−∇a(eµ)c +∇b(eν)c
= ∇a(ωbµν)− ηαβ [∇a(eµ)f ](eα)c(eβ)fvb(eν)c
= ∇a(ωbµν)− ηαβωaβµωbαν .

where we used δcf = ηαβ(eα)c(eβ)f to get the second equality. Combining the first and the second term (which is taking
the anti-symmetry), we can identify the first term as dtildeωνµ and the second term as the wedge product.

Let us choose,
(ẽ0)a = f

1/2
(r) (d̃t)a

such that

ẽ0 =
√
f(r)d̃t

ẽ1 =
√
h(r)d̃r

ẽ2 = rd̃θ
ẽ3 = r sin θd̃φ,

and their derivatives are

dẽ0 = 1
2f
−1/2f ′d̃t ∧ d̃t

dẽ1 = 0
dẽ2 = dr ∧ dθ
dẽ3 = sin θ dr ∧ dφ+ r cos θ dθ ∧ dφ .

Using our formula for the derivative of basis 1-forms gives

1
2f
−1/2f ′d̃r ∧ d̃t = h1/2 dr ∧ ω̃1

0 + r dθ ∧ ω̃2
0 + r sin θ dφ ∧ ω̃3

0 .

One natural guess could be that ω̃2
0 = ω̃3

0 = 0 and

ω̃1
0 = α1 dr + 1

2
f ′

(fh)1/2 dt ,

which would cause the first term to match, and the last two terms to be zero. Let’s hope this is in agreement when we apply
the formula on the other terms. We get,

0 = −e0 ∧ ω1
0 + e2 ∧ ω2

1 + e3 ∧ ω3
1

=⇒ 0 = −f1/2 dt ∧ ω1
0 + r dθ ∧ ω2

1 + r sin θ dφ ∧ ω3
1 .

Letting α1 = 0 and setting

ω2
1 = α2 dθ + α3 dφ

ω3
1 = α3

sin θ dθ + α4 dφ

makes the second equation true. For dẽ2 , we have

dr ∧ dθ = −f1/2 dt ∧ ω2
0 − h1/2 dr ∧ ω2

1 + r sin θ dφ ∧ ω3
2 .

Substituting in the guesses we already made, we arrive at α2 = 1
h1/2 . To make this equation true, we can guess

ω3
2 = −α3h

1/2

r sin θ dr + α5 dφ .

Going to the last equation, we have,

sin θ dr ∧ dφ+ r cos θ dθ ∧ dφ = f1/2 dt ∧ ω0
3 − h1/2 dr ∧ ω3

1 − r dθ ∧ ω3
2 .
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Plugging everything in, we get α3 = 0 and α4 = − sin θ
h1/2 , α5 = − cos θ. In conclusion, we have our six connection 1-forms,

ω2
0 = 0
ω3

0 = 0

ω1
0 = 1

2
f ′

(fh)1/2 dt

ω2
1 = − 1

h1/2 dθ

ω3
1 = − sin θ

h1/2 dφ

ω3
2 = − cos θ dφ

We can now compute the Riemann tensors. Since Rabµν = −Rabνµ, we only need to compute the ones where µ < ν. Therefore,

R̃1
0 = dω1

0 + ωσ0 ∧ ω0
σ = 1

2
d

dr

(
f ′

(fh)1/2

)
dr ∧ dt

R̃2
0 = dω2

0 + ωσ0 ∧ ω2
σ = ω1

0 ∧ ω2
1 = −1

2
f ′

f1/2h
dt ∧ dθ

R̃3
0 = dω3

0 + ωσ0 ∧ ω3
σ = ω1

0 ∧ ω3
1 = −1

2
f ′ sin θ
f1/2h

dt ∧ dφ

R̃2
1 = dω2

1 − ω3
1 ∧ ω3

2 = 1
2h
−3/2h′ dr ∧ dθ

R̃3
1 = dω1

3 + ω2
1 ∧ ω3

2 = −cosθh−1/2 dθ ∧ dφ+ 1
2 sin θh−3/2h′ dr ∧ dφ+ cos θh−1/2 dθ ∧ dφ = 1

2 sin θh−3/2h′ dr ∧ dφ

R̃3
2 = dω3

2 − ω2
1 ∧ ω3

1 = sin θ dθ ∧ dφ− sin θ
h

dθ ∧ dφ =
(

1− 1
h

)
sin θ dθ ∧ dφ .

We are looking for vacuum solutions, so the Ricci tensor needs to vanish. We have,

R00 = R010
1 +R020

2 +R030
3 = 1

2
1

(fh)1/2
d

dr

(
f ′

(fh)1/2

)
+ 1

2
f ′

f1/2h
− f ′ sin θ

rfh

R11 = R101
0 +R121

2 +R121
3 = −1

2
1

(fh)1/2
d

dr

(
f ′

(fh)1/2

)
+ 1

2
h′

h2r

R22 = R33 = R202
0 +R212

1 +R232
3 = −1

2
f ′

rfh
+ 1

2
h′

rh2 + 1
r2

(
1− 1

h

)
, .

Note that we have to evaluate R̃1
0 = Rab0

1 through its orthonormal basis. That is,

dt ∧ dr = 1
(fh)1/2 e0 ∧ e1

dt ∧ dθ = 1
rf1/2 e0 ∧ e2

dr ∧ dθ = 1
h1/2r

e1 ∧ e2

dr ∧ dφ = 1
h1/2r sin θ

e1 ∧ e3

dθ ∧ dφ = 1
r2 sin θ e2 ∧ e3

We want the trace to be zero, so each of the Rii = 0. We have three equations and two unknowns, so we hope that they are
equivalent with each other! Adding the first two equations, we get

f ′

f
+ h′

h
= 0 =⇒ d

dr
ln(fh) = 0 =⇒ f(r)h(r) = K,

for some constant K. By rescaling time we can make K = 1. Therefore, h = 1/f and h′ = − 1
f2 f

′. The third equation gives,

0 = −f ′r + (1− f) =⇒ (rf)′ = 1.
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Therefore,
f = 1 + C

r
,

and we have derived the Schwarzschild metric,

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2), (4.8)

where we identified C = −2M, derived such that when M is small, we get Newtonian gravity. Note that at r = 2M,
∂

∂t
and

∂

∂r
are not linearly independent. At first, Schwarzschild thought that this was no good since it is singular at this point, but it

turns out that we just need different coordinates to describe r = 2M.

A true physical singularity occurs at r = 0 (i.e. physical, curvature tensor blows up).

Outside the spherical mass distribution, such as a star, we have a vaccuum solution, so Gab = 0 = Rab. Inside the star, the
Ricci tensors are

R00 = 1
2(fh)−1/2 d

dr

(
f ′

(fh)1/2

)
+ f ′

rfh

R11 = 1
2(fh)−1/2 d

dr

(
f ′

(fh)1/2

)
+ h′

rh2

R22 = R33 = −1
2
f ′

rfh
+ 1

2
h′

rh2 + 1− h−1

r2 ,

and the scalar curvature is

R = −R00 +R11 +R22 +R33

= −(fh)−1/2 d

dr

(
f ′

(fh)1/2

)
− 2 f ′

rfh
+ 2 h′

rh2 + 2(1− h−1)
r2 .

Assume the star is a perfect fluid, so the Einstein equation gives

8πρ = G00 = h′

rh2 + 1− h−1

r2 = 1
r2

(
r

(
1− 1

h

))′
8πP = G11

8πP = G22 = G33.

The solution to the first equation gives

r

(
1− 1

h(r)

)
= 8π

∫ r

0
ρ(r)r2 dr

=⇒ r

(
1− 1

h(r)

)
= 2m(r)

=⇒ h(r)−1 = 1− 2m(r)
r

.

Note that outside the star for ρ = 0, this agrees with the Schwarzschild solution. For r ≤ R, the proper mass is

Mp =
∫ R

0
ρ(r)r2

(
1− 2m(r)

r

)−1/2
dr > m(R) = M.

Letting f = e2Φ, we get
dΦ
dr

= m(r) + 4πr3

r(r − 2m(r)) ∼
m(r)
r2 ,

so we get the Newtonian potential in the limit.
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4.6 Geodesics of Schwarzschild
Determining the geodesics may seem to be extremely complex, but because of the high degree of symmetries. Let σ(τ) be a
proper time (or affinely parametrerized) geodesic. Then

−K = 〈σ̇, σ̇〉g

where K ∈ {0, 1}. We have the symmetry θ ↔ π − θ, allowing us to write

θ(0) = π/2, θ̇(0) = 0, θ(τ) = π

2 .

We also have our Killing fields. The conserved quantities are

E = −〈σ̇, ∂
∂t
〉g = ṫ

(
1− 2M

r

)
L = 〈σ̇, ∂

∂φ
〉 = φ̇r2,

and using these conservations, we can write

−K = 〈σ̇, σ̇〉g = −
(

1− 2M
r

)
+
(

1− 2M
r

)−1
ṙ2 +���r2θ̇2 + r2φ̇2

= −
(

1− 2M
r

)
E2(

1− 2M
r

)2 +
(

1− 2M
r

)−1
ṙ2 + L2

r2 .

We can write,

E2

2 = 1
2

(
K + L2

r2

)(
1− 2M

r

)
+ ṙ2

2 ,

where the first term is the potential energy, i.e.

V (r) =
(

1
2 −

M

r

)(
K + L2

r2

)
= K

2 −
MK

r
+ L2

2r2 −
ML2

r3 ,

where the second term is the Newtonian potential, second term corrects for angular momentum, and the last term is the Einstein
correction. We have two cases,

• Case 1: K = 1. We get

V (r) = 1
2 −

M

r
+ L2

2r2 −
ML2

r3 .

We can find its critical points by setting V ′(r) = 0, which gives

0 = 1
r4

(
Mr2 − L2r + 3ML2) ,

which gives

R± = L2 ±
√
L4 − 12M2L2

2M

= M

2

(
L2

M

)1±

√
1− 12

(
M

L

)2
 ,

so there can be two circular orbits for a given angular momentum L, given that L2

M2 > 12, where one of them is the
standard Newtonian stable one, and the other one is closer to the central body and unstable.

We have,

E2(R±)
2 = V (R±)

= 1
2 −

M

R±
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5 Appendix C: Maps of Manifolds
5.1 Pushforwards and Pushbacks
In this appendix, we will talk about maps of manifolds. If we have a map φ ∈ C∞(M,N), i.e. φ : Mm → Nn, then tangent
vectors to M can be pushed forward through φ to N, and cotangent vectors to N can be pulled back through φ to M (unless
φ is a diffeomorphism).

A tangent vector v ∈ TxM pushes forward to
φ∗v ∈ Tφ(X)N.

Note that Wald uses φ∗ for pushforward and φ∗ for pullback, which is the opposite of the standard notation. If f ∈ C∞(N)
then f ◦ φ ∈ C∞(M). Then we also have

(φ∗v)(f) = v(f ◦ φ).

Similarly, if µ ∈ Tφ(x)N , then its pullback
φ∗µ ∈ TxM

is
(φ∗µ)a(va) := µa(φ∗v)a,

for all v ∈ TλM. More generally for arbitrary tensors we can push forward any tensor with only up indices

(φ∗T )a1···ak (µ1)a1 · · · (µk)ak
= T a1···ak (φ∗µ1)a1 · · · (φ∗µk)ak

,

or pull-back any tensor with only down indices Mixed index tensors T ab present a problem unless φ : M → N is a diffeomorphism,
in which case

(φ∗T )a1···ak
b1···bl

vb1 · · · vblµ1
a1
· · ·µkak

:= T a1···ak
b1···bl

(φxµ1)a1 · · ·
((
φ−1)k v`)b`

,

which can also be interpreted as the Jacobian map from the coordinates on M to the coordinates on N.

Note that if φ : M →M and (φ∗g)ab = gab, then φ is called an isometry. More generally if φ∗T = T for some tensor field T ,
then φ is called a symmetry of T. That is, if we have a physical theory on (M,T (1), . . . , T(k)) and another physical theory on
(M ′, T ′(1), T

′
(k)), then they are equivalent (or same) if there is a diffeomorphism φ : M →M ′, which pushforwards each Tij to

T ′ij .

5.2 Lie Derivatives
Recall (at least on a compact manifold) a vector field va on a compact manifold M induces a 1-parameter group of diffeomor-
phisms

φs : M →M

given by 
∂φs(x)
∂s

= v(φs(x))
φ0(x) = x,

locally in s. We can define the Lie derivative of a tensor field

T ∈ T (k, `)

on M (in direction v) by

(LvT )a1···ak
b1···b`

= lim
s→0

(φ∗−sT )a1···ak
b1···b`

− T a1···ak
b1···bell

s
,

and it also satisfies the Leibnitz rule.

Lemma 3: Some properties of the Lie derivative:
(a) If T = f ∈ C∞(M), then

Lvf = v(f)

(b) If T = w ∈ T (1, 0) is a vector field, then
Lvw = [v, w]
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Proof. 1. Build a coordinate system on M where s is the first coordinate. Then,

φ−s(x1, · · · , xn) = (x1 − t, x2, · · · , xn).

The Jacobian of this change of variables is
(φ∗−t)µν = δµν ,

so
(φ∗−tT )µ1···µk

v1···v`
= Tµ1···µk

v1···vk
(x1 + t, x2, · · · , xn).

Plugging this back, we have

Lv(f) = lim
s→0

f(x1 + s, x2, · · · , xn)− f(x1, x2, · · · , xn)
s

= v(f),

is the standard directional derivative.

2. In these coordinates,
(LvT )µ1···µk

ν1···ν`
= ∂Tµ1···µk

ν1···ν`

∂x1,

so

(Lνw)µ = ∂wµ

∂x1

= v1 ∂w
µ

∂x1

=
∑
α

vα
∂wµ

∂xα
− wα ∂v

µ

∂xα

= [v, w]µ,

where we recall that vν =
(
∂

∂x

)µ
.

Once we can define the Lie derivative of functions and vector fields, we can define the Lie derivative of any tensor field through
duality.

Corollary 1:
(a) If µ ∈ T (0, 1), then

(Lνµ)a = vc∇cµa + νc∇aνc

(b) If T ∈ T (k, ρ) on M, then
(c)

(LνT )a1···ak
b1···b`

= vc∇cT a1···ak
b1···b`

−
k∑
i=1

T a1···c···ak
b1···b`

∇cva +
∑̀
j=1

T a1···ak
b1···c···b`

∇bjvc.

Proof. We only prove the first part. Given µa ∈ T (0, 1) and wa ∈ T (1, 0), we have

Lv(µawa) = v(µawa) = vc∇c(µawa)
= (vc∇cµa)wa + µav

c∇cwa.

Since Lv satisfies Leibnitz rule, we can also write this as

Lv(µawa) = Lv(µa)wa + µaLv(wa)
= Lv(µa)wa + µa (vc∇cwa − wc∇cva) .

Equating the two expressions for the Lie derivative gives us the desired relationship.

5.3 Killing Vector Fields
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Definition: A vector field V c on M is a kiling vector field if and only if ∇[avb] = 0, for the Levi-Civita connection.

Lemma 4: If va is a killing vector field, and γ is a geodesic with tangent vector Ua = dγ(τ)
dτ

, then

d

dτ
(vaua) = 0

along γ.

Proof. Note that

d

dτ
(vaua) = ub∇b(vaua)

= ubua∇bva + vau
b∇bua

= 2ubua∇[bva]

= 0.

Note that ubua is symmetric and ∇[bva] is antisymmetric, so the above expression is zero.

We can also count symmetries. On Rn, we have n translations and
(
n

2

)
rotations, for a total of n+

(
n

2

)
symmetries.

If vc is a Killing field, we have

Rdabcvd = ∇a∇bvc −∇b∇avc
= ∇a∇bvc +∇b∇cva

Rdbcavd = ∇b∇cva +∇c∇avb
Rdcabvd = ∇c∇avb +∇a∇bvc.

Adding the second line and subtracting the third, we get

(Rdabc +Rabca −Rdcab)vd = 2∇b∇cva.
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