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1 MANIFOLDS AND TENSOR FIELDS

1 Manifolds and Tensor Fields

1.1 Review

Note: The manifold section should serve as a review from MAT367, so we will be quickly going over it.

Definition: An n-dimensional, C'*°, real manifold M is a topological space together with a collection of subsets {O,}
satisfying the following properties:

1. {0y} cover M.

2. For each « there is a homeomorphism v, : O, — Uy, where U, is an open subset of R".

3. If any two sets O, and Og intersect, then g o Yt is smooth.
Note that there are a few extra conditions (Hausdorff and paracompact), but they generally aren’t important.

Let F denote the collection of C*° functions from M to R.

Definition: Tangent vectors are maps v : F — R which satisfy:
1. Linearity: v(af +g) = av(f) +g¢
2. Leibniz's rule: v(fg) =v(f)g + fv(g)

The commutator (Lie Bracket) of two tangent vectors [v,w] = v ow —w o v is also a tangent vector.
1.2 Tensors
Now, we can introduce the notion of tensors.

Definition: A (k, ¢) tensor over a vector space V is a multilinear map

T: V% - xV*xVx---xV =R
k ¢

Some examples:
e A (0,1)-tensor is a dual vector
e A (1,0) tensor is an element of V**.

An interesting example is a (1, 1)-tensor, which is a map V* x V' — R. However, we can fix v € V so V(-,v) is in V**. But
since V** is canonically isomorphic to V, we have a linear map from V' to V. Similarly, we can also view T' as a map from
Ve—= V.

Let 7 (k, ¢) be the space of all (k,¢)-tensors. There are two important operations on tensors:

1. Contraction: Thisisa map C: T (k,¢) — T(k —1,¢ — 1), defined by

CT:iT(...71)‘7*,...;...,11(,,...).
o=1

2. Outer product: Given a (k,¢)-tensor and a (k’,¢’)-tensor, the outer product is defined by

* 7y * * * * 1y *
(T T, .., v FTF) cur vgp) =TV, 0 g, v )T (DT TR ).

One way to construct tensors is to take the outer product of smaller tensors, i.e. vectors and dual vectors. If this is possible,
then the tensor is simple. Let {v,} be the basis for V' and {v” } its dual basis. Then,

(U, @ @V, @V © - @0}

forms a basis for T (k,¢). Then every (k,¢) tensor can be written as a linear combination,

n
v
T= E T #kvl“'wvltl Q- QU

H1yeeeVe=1
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2 CURVATURE

where the coefficients T#1""F* , ., are known as the components of 7. Note that it is often more convenient to work with
just the components. For example, when applying the contraction and outer product:

e Contraction: We have

n
el Gl
(OT)M 1223 1V1ml/£71 — § TH1 Mk 1,/1"'0“.”271.
o=1

e OQuter product: We have

(T @ Ty iwe,

1 Voye!

Theorem: The tensor transformation law says that

n
’ ’
IRy
1 (228

M1, ve=1

Definition: A metric is a (0, 2)-tensor that is also:
e Symmetric: g, = guu
e Nondegenerate: g,, =0 only if 4 = v = 0.

We can write

— THL

U f I e41 " Mooy 1!
V1'--VzT + k+k

Ox'm ox"e

g= Zgwdx“ ® dz”

w,v
1.3 Abstract Index Notation

2 Curvature

Vet1Voypr

How do we compare vectors in a curved space? We can't simply add or subtract since they live in different tangent spaces. To

do so, we need to introduce a derivative operator.

properties:
1. Linearity: For A, B € T(k,£) and o, 8 € R,

2. Leibnitz Rule:

3. Commutativity with contraction:

5. Torsion free:

We need to show a few important facts about this derivative operator:

vd(Aal...c-uakbl.uc.”bz) =

VC(aAalmakbl“'be + ﬂBalmakbr“bz) = avC(Aalmakbl“'be) + ﬁvC(Balmakbl--Abe)'

(Vo)™ % .ty
4. Consistent with tangent vectors. For all f € F and t* € V,,, we have:

t(f) =t"Vaof

VaVof =V Vaf

Definition: A derivative operator V on a manifold M is a map V : T(k,¢) — T(k,¢ + 1), that satisfies the five

Ve [Aalmakbl.,.bZBclmck’dl...de,} = [VeAalmakbl.,.be]Bcl”'ck'dl..,de, + ATy, [VGBCI'”C’“/dl...dW} .

0 ,
e V exists: To do so, pick local coordinates {E):W} and {dz"}. Then trhe ordinary derivative 0, defined by:

B s THIHE

9 THLBE
ox° v



2 CURVATURE

e The derivative operator is almost unique. Given two operators V, and V,, their difference is characterized by the tensor
field C<,, which is sometimes denoted as the Christoffel symbol ' when V, is the ordinary derivative oeprator. That
is,

Vat? = 0,t" + T 1¢

Definition: A vector v given at each point on the curve is said to be parallelly transported as one moves along the

curve if the equation
Vo’ =0

is satisfied along the curve. In general, a tensor of arbitrary rank is parallelly transported if

1OV T b

1oep = 0.

Consider a vector and choose a coordinate system. Then the above simplifies to:

d v
t70,0° + T2 0 = 0 = ;}t + Z#LFZXU)\ =0.
TN

A vector at a point p on the curve uniquely defines a parallel transported vector everywhere else on the curve. The mathematical
structure arising from such a curve dependent identification of the tangent spaces of different points is called a connection.

Theorem: Let g, be a metric. Then there exists a unique derivative operator V,, satisfying V,gp. = 0.

A direct corollary is that a metric g, naturally determines a derivative operator V. In particular, we have:

C

1
= 5ng (Oagbd + OvGad — OdGan) ;

and the coordinate basis components are

1 dg dg dg
re — - po vo pwo uv '
) zg:g ( Oz * oxv  Ox°

Motivation to Curvature

Suppose we are on a riemannian manifold, i.e. the metric is positive definite. Consider a curve 7 € C*([0,1] — M™), then

and define the distance between z¢ and x; as
d(zg,x1)% = inf{L(T)Q, }

where 7(0) = xg and 7(1) = 2. If 7 attains this infinum, then L(7 + eo) > L(7) for all € > 0 if 0(0) = (1) = 0. Then:

d
0= d—L(T +e€0) < 7 is parallel transported along 7,
€

where the connection is the Levi-Civita derivative,
7U(t)V o7, (2.1)

which is known as the geodesic equation. In coordinates, recall that V,V? = 9,V? + I‘ZCVC, so the geodesic equation
becomes 5
dr® . dr dr® _, drm”
- k. — =0, 2.2
dt dt dt ~ 7 dt (2.2)

which is sometimes written as
d*rB 3 dr® dt7

o+ D0, (r(0) T =0, (2.3)

dr?
If 77(0) = 2 and %(0) = V7, then the solution (locally) is

7(t) = exp,(tV),



2 CURVATURE

where the exponential map is exp,, : T, M — M,0 — z, defined by:
(@,V) = (z,exp, V).

We can think of the exponential function as exp,, tvg tells us to go a distance t(vg), in direction 7. The exponential map is
smooth, and locally and smoothly defined. If we identify (T, M, g.,) ~ (R",d4p), i.e. with the euclidean space and metric,
then we can call it the Riemannian normal coordinates at x(, which is a local coordinate chart at z5. Now consider two
curves 7(t) = exp, (tW) and o(s) = exp, sV with o(0) = 7(0) = x. Therefore,

d*(o(s),7(0)) = s*, d*(a(0), 7(t)) = t*,

which is true per the geodesic equation. If we taylor expand d?(7(s), 7(t)) around (s,t) = (0,0), then the cross terms are zero,
so

d*(o(s),7(t)) = sV —tW|* + O(|(s,1)[*)
— sV — W2 — %R(v,w,v,w) +0(|(s, 1)),

Here, R is the Riemannian curvature tensor. Therefore, curvature is just a way to describe higher order terms when computing
the distance.

Formal Definition of Curvature

Now we extend to a more usual definition of curvature, which also extends to vectors that cannot be parallelly transported.
Consider f € F and w € T(0,1) such that V[,V f = 0. Then,

vavb(fwc) = va(wcvbf + fvbwc)~
The commutator relationship is then:
V[avb] (fwc) = fv[avb]wo
The fact that f pulls through implies that this function can only depend on the value of w. at p and not at any nearby points.
The most general linear thing that satisfies this is some arbitrary tensor

(vaVb - vbva)wc = Rgbcwd’

where RY,_ is the Riemann curvature tensor. We can write something similar for (V,V;, — V;,V,)V¢. Here, V¢ € T(1,0) and
we € T(0,1). Therefore, we can contract the two together to get,
0= (VaVy —VpVeo)(Vew,)
= VR wi + waV [, Vi V7

This gives us

ViV V%= —R V.
By induction, we can show that if T € T (k, £), then

k
by---b bi by e - by by---b
v[avd]T ! kclmcz = - E Ryge " T © kclmcz + § RadcjeT ! kclmemcl-

i=1 j=1
The standard intuition behind this formulation is the failure to conserve a vector when taken under parallel transport around a

closed curve.

First recall that if U, B” € T(1,0) and we want a vector field W such that [U, V]® = W€, then

W(f)=U\V(f) - V{U(f))
= UV, (VVaf) = VOV (U, f)
= (UV, V¢ - V*VU)V..f

Consider a surface S. Let's attempt to parallel transport V' around a parallelogram (0,0) — (As,0) — (As, At) — (0, dt).
Let us fix wp € T(0,1) and let us see how V%, changes.
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. 2\ ’
Define S* = () and T = <) be coordinate tangent vectors to S. Note that [S, 7] = 0. Then,

Os

+ O((As)?)

01 = (As) i(v“wa)
d (As/2,0)

S

= (As)S*Vy(v%w,)

(As/2,0)

= (As)S"0* Abw,

(As/2,0)
Similarly,
63 = —(As) S0 Viw,

(As/Q,At)'

However, the v® in this last expression is the vector we get after being transported halfway across the parallelogram. But first,

note that
81+ 0o 4 05 + 04 = O((As)? + (At)?),

so since the difference between the vectors at different points vary by second order, we can effectively ignore them. Therefore,

01 + 02 + 03 + 04 = Unew — Vo = *SbTCRgcaUO
The Riemann tensor has some symmetries,
L. Rupe’ = —Rpac®
. Riapg® = 0.
M Vagee =0, then Roped = —Rabde-

B~ W N

. V[eRab]cd = 0 is the Bianchi identity.
We can prove these,
L. Rapewq = Vi Viywe

2. Consider some form Tj,;.. Then
v[cLT'bcd]

is a form. But taking the derivative again
ViaVieTede = 0.

To see this, we can rewrite
V[azjbcd] = 8azjbcd + F[eab] Tocqg +--- .

Since the I" are symmetric, then the I" terms disappear, and we get 0,Tpcq. Therefore,

v[avbT’cde] = a[aabTCde] =0.

2.1 Geodesics

Let X"t C M™ be an (n — 1)-dimensional submanifold of M, i.e. a hypersurface. Then,
R ~T,% CT,M ~R".
There are three cases for g

g > (0 <= X is spacelike at p,
TS XT3

which is alwys true for Riemannian metrics. For Lorentizn metrics,
det g|(r,5)2 =0 <= X isnull at p

glr,z)2 <0 <= X is timelike at p.
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We claim that there exists a nonzero normal vector N € T,,M such that g(IN, X) = 0 for all X € T,X. Note that N won't be
null, i.e. N ¢ T,% (except possibly in case 2). Therefore WLOG,

g(N,N) = +1
except of course in case 2.
Gaussian Normal Coordinates near ¥ Let X = (2!,...,2" ") be any coordinates on a neighbourhood of p in . Then,
(1;17 . ,ac"_lyt) ER— eXPY_(y1, . gn-1) tN e M

gives coordinates in a neighborhood of . Notice that
NN, = +1

and for all X° ¢ T4%0, we have
g(N, X)=N,X*=0.

Claim: The geodesic t € R — exp tIN remains orthogonal to ¥; for all small ¢.

a __ 0 ¢
X = (ax>

o\’
for i € {1,...,n — 1} form a coordinate basis for T,,X, and N = <8t> denotes the tangent to the geodesic. Recall,

Proof. The tangent vectors

[V, X(3]" =0.

This is equivalent to
TV, X = XV, T,

for X € {Xy,...,2p_1}. We then claim that
N®X, =0,

for all |t| < 1. Its derivative along the geodesic is
NPV (N°X,) = (NPHNT) X, + N°N*V, X,
= N, X"V, N
= %XbVB(NaN“)
= %XbVB(il)
=0.

2.2 Geodesic Deviation Equation and Jacobi Fields
Lett € I CR — o(t) € M be a geodesic. Now consider a surface
(5,t) € B1(0) CR? = 0 (t) = o(t;s) € M

formed by geodesics t € I, C R — o4(1), i.e.
59V 065 = 0.

If we have a geodesic, we can re-parametrize it. That is, o (bt + ¢) is also a geodesic. If o depends on s, then os(b(s)t + ¢(s))
is also a geodesic. We have some freedom to choose b(s) and ¢(s). Let us choose b(s) such that

6%, = £1.

We can also choose ¢/(0) so that
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Finally, we can choose X* = (g) and c¢(s) such that
s

As before, 6°V;,(6X,) = 0. Therefore, X remains orthogonal to & along o(t) for all ¢, which is a result we've seen before.

We can linearize the geodesic equation around o((t) to get a linear 2nd order equation for X“. That is, we can compute the
velocity

v ="V X
a® = oV 0
of a nearby geodesic relative to og(t). We can rewrite,
a® = 6°V. (6"VyX?),

which includes two derivatives. Recall that the order of derivatives matter and if we want to switch the order, we need to
include curvature. Note that since [d, X] = 0, we can rewrite,

a® = 6°V, (X"V,6%)
= 6%V X"V + XP6°V V6"
= (X°V.6") V6 + X 6°V, V6" — R, 09X 05°
= —R6" X",
Note that a is linear in X, so this is the linear second order equation we wanted. In coordinates, this becomes,

d? oy
EXOL + R?;/j(go"ya'&Xﬁ = 0

The initial conditions are X*(0) = X and X®(0) = V. There are n choices for both, so 2n degrees of freedom. Note that
2 of them correspond to the affine reparametrization of o(¢).

Solutions X *(¢) along o.(t) are called Jacobi Fields.

2.3 Computing the Riemann Tensor

How do we compute R%,.? There are different methods to do so, but we begin with the coordinate method. Given a tensor
field wg € T7(0,1), then

1 1
—R%, wq= 5(vavb — VuVa)we

2
= V[avb]wc.

In local coordinates,
vawb = 8awb - 1_‘Cab"‘)cw

and we can write it in a more useful form,
d
wac = ahwc — F beWd-

We have,
Vo Viwe = 0a(Opwe — Tewa) — Tap (Oewe — Tecwa) — T€0c (Opwe — Tiewa)
= Vo Vywe = =0 T4 ewa + €T ewa.
Therefore,
Ra[ﬁ& = _%Féﬂv + a;zgrécw + Fevarée - Fevﬁréae'

There are different types of curvature tensors. We have the Ricci curvature,
b
RGC = Rabc

and the scalar curvature R = R = R,.9°.
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2.4 Twice Contracted ldentity

Starting from the Bianchi identity, we can expand it:

0= 2V, Rped® + 2V R,y + 2V Ry,

Contracting on c, e gives
va-Rbd - vaad + VERZbd7

and contracting it by ad (i.e. multiplying by ¢g°¢) gives
0=V?Rp, — Vp R,* + V°Rype

1
=2 (V“Rba - 2VbR>

1
=2V* (Rab - 2Rgab> ;

1
where G4 = Rap — iRgab is often known as the Einstein tensor, and the twice contracted identity tells us that it is divergence

free, which gives us a conservation law.
Recall that we can write,
0=V,

_Ov?
T 9z

+ Faabvb.
We can write out an explicit formula for the contracted Christoffel symbols:

re _ 1 ad (agdb agad agab>
ab — & -

2 ox? Oz Oxd
1 (89{,(1 ad 09ad 99ab )

T2
1 0

29%@%0

ozt 9 oz Oxa

Alternatively,

10
M= = —1
b= 5.0 og|g|
1 0 «
=<7 > log|\
525 2 1os

110N
1 0

29“@9(15

where |g| = | det g;;].

2.5 Differential Forms

Let V, be a connection on M. We can define the derivative operator
d: AP(M) — AP (M)

by

Wal...ap = v[bwal...ap]

which we can expand to

o N
v[bwal...ap] = @wal...ap + Z C[baiwal...|c|...ap~

i=1
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But this last term is zero, so d only depends on the differential topology of the manifold, and not its differential geometry. It
is independent of the connection choice! Therefore, we often denote the derivative of w as dw.

Note that w € AP(M) is closed when dw = 0 and w is exact when it can be written as w = d7.

The manifold M is orientable if and only if there exists an € € A™(M) that is continuous non-vanishing. If « € A™(M) and
M is oriented (by €) then
/ o
M

is defined locally in charts and globally by partitions of unity, and is independent of coordinates on the chart.

However, things become spicy once we bring a metric into play. A pseudo-Riemannian metric g on M™ selects a preferred
volume form € (up to a sign (orientable)). This is to ensure

€ ey a, = (—1)°n!

Many nice things follow from this. In right-handed coordinates on U C M, we have

€= /lgldz' A---da

_ (9 9
G = I\ gpr 0zv )

where |g| = | det go | in some coordinates. Let:

and consider the change of basis

0 ozt 9 ., 0
Oxf  OxF Ozt POz
Then,
_ Ox* 9z 0 0
Iiw = Gt 927 (E)x“’ axv>
= A”[\Ugw7

where the A are Jacobians. Then,
1g|'/? = | det Allg]"/?,

is how the determinant of the metric changes wrt coordinates.

allows for the reduction to the Standard Stoke's Theorem via integration by parts.

Lemma 1: If the derivative V, and volume form € are compatible with g, then U is a subdomain U CC M™ implies

| 1@ve= [ (rven)aa- /U (Vaf)Vae

where n, is an outer normal form?. If f € CY(U) and V € T(1,0) is ¢!

?For example if U = {z € M, ¢(x) < 0} with |dp| = 1, then we can identify n = d¢

Proof. Assume a coordinate chart 1) covers U. Then, we can integrate,

_/ f(vava)e:_/ f(ava +raﬂvﬂ) Vodzt A Ada”
U ww)  \ 0T
ove V2 8lglt 2N n
__/d}(U f<8xa\/§+| 172 9P >d:c A Ado

/ fa (,\ 1124 fvP |g|5 dz' A Ada™,
( )

= + a (f\/g) / fva\/gnadn_lx
MU) aP(U)
- / a Gaa (VIVE) + (0a )V Vgd" - 2/ JVE fgnad" e,
y(U) O v ()

10
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Which gives
o YRR Nty (RN CNOVAN T
op(U) ()
which is the same thing as what we want in our lemma.

Note that the reason there is an extra /g term is because of the minkowski capacity,

(U, — U,
Area(X) = lim M,
e—0 €
and the volume will have a /g factor, so we need to add this to the area when we work with coordinates. O

3 Stress Energy Tensor

In Euclidean geometry R, we have hu, = diag(1,1,1), which implies that I‘Zﬁ = 0, so the covariant derivative agrees V,, = 0.,
geodesics are straight lines, and parallel transport is curve independent. In R* in special relativity, we have

N = diag(—1,1,1,1),

and the Christoffel symbols vanish, etc. Although there is no inertial frame, there is still a future direction and orientation.
Consider the (M"™, g"") Lorentzian manifold:

e At each point, we have a lightcone, and we can decide the future direction in a consistent way (orientable).

e Massive particles, absent other forces, follow timelike geodesics, parametrized such that
g9(d'(s),0'(s)) = —1

e The 4-velocity is
. do®

_ds

and the 4-momentum is
P¢ =mU*.

e The energy of our particle, measured by a non-comoving observer at the same point in spacetime M, is
Frb Frb
U Py = gab(U apa)a

where U is the 4-velocity of observer.

e U and U makes an angle of # with each other. Note that
tanh ) = v = tan¥,

so we can write the energy as
m

Ulpy = mcosh ) = ————,
V1—|v?
where |v] is the relative 3-velocity.

mu
V1=
Something else that is affected by boosts is number density. Consider N particles at rest and draw some box with volume r
in the z,y, z direction. The density is

o If g,» X?U" = 0, then the momentum in the X direction is gap X “p” =

3

N
n=—.
r3

In a moving reference frame, the Lorentz boost, the particles are now moving at some relative velocity (v, 0,0) in the z-direction.

The density now becomes
_ n
n= poc
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due to length contraction, so density transforms like the first component of a 4-vector. We can treat this as a 4-vector, where
the other 3 directions are the fluxes. The number flux vector is

N comoving (n’ 0, 07 O)

2, (/T = 0P, — e 0,0)

[0]?
3

boosted n’Ul an nv
—_—— v1— 2, , , .
(W v waQw—w2ﬂ—MJ

Note that the number of particles is observer independent, i.e.

2 b
n- = gab(Na7 N )7
where n is the scalar rest density and is the first component of N® in comoving coordinates.

This motivates the question of what the energy density of these particles might look like. The energy density is the energy per
particle times the density of the particles, i.e.
comoving
mn
x-boosted mn
1—|v|?

This transforms like a (2,0) tensor T = P% @ N®. This motivates us to write,

mn 0 0 0
ab comoving 0 0 0 0
T 0 0 0 O
0 0 0 O
mn muvn
1—22 1- 1)22 00
x-boosted mun mnuv 0
1—22 1-—192
0 0 0 0
0 0 0 0

which is the energy momentum tensor for dust. More generally, 79" is the stress-energy tensor of matter, with the following
properties

e The energy-density observed by observer having velocity v is

Topvto®

o If gop(X%, VP) =0, Then the energy flux of matter in X? direction is

Topv®X?
and

Top X %0°
is the X* momentum density, and

T XY

is the X* momentum flux in the Y direction, where gq;(X%, Y?) = gup(V,Y?) = 0.

Lemma 2: The stress-energy tensor is symmetric, i.e. 7% = T,

Proof. Note that 7% is the X momentum density and 7°% is the energy flux in the 2 direction. These are the same quantity,
so

TaO — TOa.

12
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To show that 7% = T°? for a,b # 0, we can use a rotation argument. Consider small volume cuboid elements. The torque in
one direction is created by contributions from four sides. For example, the z torque is given by

(Try 7‘2> - (Tyx 1"2) .
y=r T=r

The zz momentum of inertia scales like 7°. The angular acceleration is a ratio, and to prevent diverging for small 7, we evaluate
at y = 0+ 3 ~ 0 instead, and we get

r? 4 Tv®

T=—T

r? 4+ T

y=—r

in order to prevent infinite acceleration. O

3.1 Perfect Fluids

Perfect fluids have no viscosity (no heat conduction), so there is no shear force. Therefore, 7% = 0 for all o # € {1,2,3}
spacelike indices. Since there is no heat conduction, heat (energy density) can only be transported in the direction of the fluid,
i.e.

T°° = O0Va € {1,2,3}.

In a special relativity frame, we have

T 0 0 0
w SR | O T 0 0
™=10 o 12
0 0 0o T3
p(x,y,z,t) 0 0 0
0 P(z,y,z,t) 0 0
- 0 0 P 0
0 0 0 P

The stress energy tensor is also divergence free, which is the statement that energy and momentum is conserved locally. Note
that in special relativity,

e Ty is the energy density

o Ty; is the energy flux in the ¢ direction

e T}y is the i-momentum density

e Tj; is the flux of momentum in the j direction.

Consider an imaginary cube. The flux through the 6 faces of the cube is given by

2 (TOOLS) — _ TOl _ TOl E _ T02 _ T02 E _ T03 T03 E
ot (0,0,0) (L,0,0) 000,/ L (0,L,0) 000,/ L (0,0,L) 000,/ L
which gives, after taking the limit L — 0,
8T00 3T01 aTOQ aTO?)
=0, 3.1
o " ox oy T o- (3.1)
which is the equation for conservation of energy. Similarly, conservation of momentum can be written as
oTi® orit 912 9173
+ + + =0 (3.2)

ot or y 0z

More generally, we can write that
VT =0.

Note that we can write

T = (p+ P)U“U" + Pg®
Tab = (P + P)Uan + Pgab-

13



3.2 Klein-Gordon Wave Equation 3 STRESS ENERGY TENSOR

Taking the covariant derivative, we have

0= V.1 =UV,(pU") + pU*V U’ + P (U'V,U" + UV, U®) + (¢°° + U U")V,P
= U (Vo (pU?) + PV U + (p + P)UV,U® + (¢°° + U*U®)V,, P.

Contracting with U® (note: U’U, = —1) in order to get the motion in a particular direction,

0= —1[Val(pU*) + PYLU] + 5 (p + PIAVL0T) + (U BT, P,
which gives us
0= Va(pU®) + PV, U = UVyp + (p + P)V,U®
0= (p+ P)UVU® + (¢°° + UU®)V,P.
How do we interpret this? In SR, gap = e and V, = 9,, and p > P for |v| < 1. Then,

ap

0=7%

o LN e
+(U~V)p+p(v-v)fa+v-(pv),

which gives us the continuity equation. We can also recover Netwon's second law, for b =1, 2, 3.

b
p (a; + (7 - V)Ub) = —9,P.

Together, they form the 3D compressible Euler equations for fluids. We have five unknowns here, p, U, U? U3, P, and four
equations. We can get a fifth equation by getting an equation of state (i.e. ideal gas law).

For dust, we have P = 0, which gives

0=V,(pU")
0=pU*V,U".

The first condition is the continuity condition (density is transported by velocity), and the second condition tells us that
the dust particles follow geodesics.

3.2 Klein-Gordon Wave Equation

For ¢ : M — R, the Klein-Gordon wave equation is

VVap —m?¢ =0,

82
(—6t2+A>gb—m2¢:O.

which can be written as

Sometimes, we write
32
—O=—-—— +A.
oz "

This comes from conservation of energy/momentum frmo the following stress energy tensor.
T — vagve — %gab (VoY + m2¢2)
Contracting it with V, gives
0= VT = (VaV'0) 7' + Vad(VaT"6) — 50" (VaVe6Te) + VoOVaVet + 2m7 6V 00)
0= (VaV%% —m?¢)Vls + Veh(V,V’0) — % (VPV,pV9 + V4V V.0) .

By the torsion free condition, we get the desired wave equation.

14



3.3 Maxwell’s Equations 3 STRESS ENERGY TENSOR

3.3 Maxwell's Equations

We can write the Faraday tensor as

—E1 0 Bg _BZ
—E;, —DBj 0 B
-FBy By, -B; 0

Fop = Flap) =

Maxwell’s equations are very simple in this notation. Namely,

VaFab = —47’er
V[aP"bc] =0,

where J? is the charge/current density four-vector. First, we can check that .J® is divergence free. Note that
b 1 bya
VoJy = ——V°VeFy
4
1
— — 0,0, F®
47
= 0,
which tells us that current is the flux of the charge density. The second relationship tells us that locally, we can write
Fop = Vo Ap — vbAcu
where A is a four-vector, known as the vector potential. Plugging this into the first relationship gives
VeV, Ay — ViV A — Ry A = —Am .
Notice that we can write A, = A/, + V,x (choosing the Lorentz gauge). Then we can show, with some work, that
VA% =V A + VYV, V.
We can choose V,V%y = V,A® to make V,A'® = 0. Therefore, our conservation law gives
VeV Ay — Ry A = —An .
How will charges move in these fields? The answer is that the acceleration is given by
uVub = chbuC,
m

and corresponds to Newton's second law.

3.4 Lorentz Gauge

In SpeCIa| Ie|atIVIty, tl e LOIentZ gauge SeekS SO|utIO 1S
iS , ,
Ab Cbel ( )7

where C? is a constant, i.e. parallel transport. Plugging this into the wave equation in the absence of charges, i.e. V*V, A4, = 0.
Then,

04 Ap = Api0, S
0?0, Ap = Ap (—0%50,5 +i0°0,,5) .

For this to vanish, both the real and imaginary components need to vanish, i.e.
0%50,5 =0=00,5.
Similarly, VA% =0 gives
C*V,S = 0.

15



3.5 Relating Geometry to Physics 3 STRESS ENERGY TENSOR

Let k, = V,S. Then k,k* = 0 is a null vector orthogonal to C®. Then the surfaces
Yy i=A{z:S() =}

are null surfaces. In fact k% is both normal and tangent to % and its integral curves. In particular, V.S is a vector field and
its integral curves ¢(t, x) solve
8¢O‘ _ aB S
O = V58 (0(s,2)
S
P%(s,x) = =™
To show that they stay on the same level set, we can plug ¢ into S and take the derivative. We can compute,

d B folox
%S(Qﬁ(s,x)) = vaSE
= V.Sg*’V;3S

=0.
Moreover, these integral curves are null geodesics, because
0=Vy(V.SV™S)
=2V V. S5VeS
=2V*SV,. VS
=2V?*SV, VS
= 2k*V k€

where the third line follows from torsion free-ness, and
k(ﬁ — g()avaS
is tangent to the integral curve
ad — k& =V, 5ViS =0
3.5 Relating Geometry to Physics

For a manifold (M", g;;), there is a tensor (Einstein tensor)
1
Gab = Rap — igava

that satisfies V*G,;, = 0. But from physics, we know there is another tensor that satisfies
VT, = 0.

For Maxwell, this tensor is

1
Tab = E (FacF; - gachdFCd) )

where VT, = 0 if J, = 0. Note that more generally, we need to take the stress energy of charges + currents to get the more
general statement.

The brilliant idea of Einstein was that maybe these are the same things. The Einstein Field equations says geometry = physics,
and says
Gab = O[Tab,

for some constant «. We want to show that &« = 8. To show this, we can compare the geodesic variation equation (which
gives us the acceleration of a nearby geodesic)

UV o (Ul X4) = —Rap lUUCX?,

to Newton's second law, which gives Lo
F=ma=—-(X V)V¢,

where the potential ¢ is A¢ = 4mwp, which can be rewritten as

F =—-X%9,0%,

16



4 PHYSICS

where 9,0¢ is the Hessian, and also has trace 47mp. The Hessian is a part of the Riemann tensor Rape?. Contracting by R,
gives
dnp = A¢p = R, UUS,

so we can guess that
Rac = 477Tac7

but the right side is divergence free. We can rearrange
1
Gab = Rab - §Rgab
!
Rac = Gac - -G acy
2 g
Noting that R,,UU" ~ 47p, we get

G
47TP = (Gab - *gab)Uan

2
T
a (Tab - anb) veu®
=a(p+7T/2)
= EQ’
p
which eventually gives us o = 8. Therefore, Einstein's equation is
Gab == 87TTab.

4 Physics

4.1 Linearized Gravity

Suppose we are given Ty,. Then we can find g4,. Recall that,

1
L% = 59("1 (Vbged + Vegoa — Vagse)

where the derivatives are linear in ¢, but multiplying it by ¢®? makes it nonlinear. Furthermore,
Rabcd = 78[arb]cd + Fec[arb]ed'

These are very hard equations to solve as they are nonlinear. One of the first things we'll do is linearize gravity (i.e. weak
gravity). We take,

Gab = Nab + Yab;

where 1,4 is Minkowski metric and ~y,; is some small variation. Its solutions correspond to gravitational waves. We can write
9o = Tap + Mas +O(N?).
More generally, given (M, gas(s)) and a 1-parameter group
¢s: M — M

of diffeomorphisms, then (M, gu,(s)) and (M, ¢%(ga.b(s))) will present equivalent theories. Therefore, we can (without loss of
generality), set
agab

Yab ‘= Os

s=0
and

’Yab:%

(¢%(9ab(s)))

s=0

8gab
= ‘Cfv a
9s |0 i Jab

= Yab — E«H}Qab-

17



4.2 Homogeneous Isotropic Universe Models 4 PHYSICS

Now, we can compute,
Logab = VVegab + 9aaVer? + garVav?.
Using the Levi-Civita connection, we have v’V g, = 0, which gives
Yab = Yab — VoVa — VaUp.

This says that in linearized gravity, if we take any ~,; and disturb it to get 7,5, then we get an equivalent theory, as expected.
Therefore, we pick
Gab = Nab + Yab,

where to first-order in 7,5, we have

and
!
[ap = 577Cd(8a7db + O Yad — OdVab)
1 1
e = 3 (0Veb + Oy — V) = iab’%

where v = v2. Then, we have
Racbd = _26[ar(ci]b

and
Rop = Rgcb = 8crgb - 8ar2b
1
= 5 (acaa’)/cb + 8aalﬂ/ac - acac'}/ab - aaab”)/) )
SO
2
00 y=0Oyv=|—-—==+A]n.
Y Y ( 12 + ) 0

4.2 Homogeneous Isotropic Universe Models

For a homogeneous, isotropic universe, we have the FLRW tensor,

d¥? 4 sin® U(dh? + sin® d¢?) k=1
ds? = —d7? + a(1)? x { d¥? + U?(df? + sin® d¢?) k=0 , (4.1)
dw? + sinh® U(d6? + sin® d¢®) k= —1

where k is the curvature. For the k = 0 case, we can compute,

R‘r‘r - _39
a
Ry = ai + 24>
. 2 . 2
R** - aa +2 a4 )
a
We can compute the Ricci tensor to be,
. . 2
R=—Ryr + 3R =6 (a +a ) . (4.2)
a

The einstein tensor is given by,
1
Gap = Rap — §Rgab = 8Ty, = 87 ((p + P) dr, drp + Pgab)

GTT:_W/+3<aa+a2> :3;“2_87Tp

a? a? a?
G _ % +22a2 s <da—|;[12> P
a a



4.3 Hubble's Law 4 PHYSICS

This gives two equations,

S T

a 4
S=—_-Z"(p+3P
" 3(p+ )

where the £ is the curvature. From the second equation, we immediately know that a is concave. This is important as it means
in future time, the universe will either continue expanding, or expand and then contract. We can also go back in time, and see
that there will be some time such that ¢ = 0. Hubble's Law tells us that

(4.3)

Recall that we only care about dust, in which P = 0 and for radiation, where P = p/3, and density is a function of time. Let's
integrate! The derivative of the first equation is

204 = 8?” (pa® + 2paa)
87T . 87T .9 .
= — 5 ad (p+3P) = 3 (pa® + 2pai)
= 0 = pa® + 3aa(p + P).

For dust, this simplifies to

1d
0=="(pa* 4.4
() (4.4
and for radiation, we have, p
1
0= - 4 45
~(pa) (45)

This tells us that,
e Dust: pa® = C)
e Radiation pa* = C,

So p and a are inversely proportional (to some exponent). Therefore, radiation energy dominates in the early universe and as
a(T) — o0, dust energy will dominate. Therefore, we have,

(4.6)

where ¢ € {1,2} depending on whether we have dust or radiation. Note that if £ < 0, we have a continuous expansion, @ # 0
and after a long time, the rate of expansion will approach —k. If k& = 1, then the universe expands to a maximum a., then
reverses the process ending in a big crunch.

If &K =0 we can solve this to get

2 2/(q+2)
a(t) = (q;— \/C’q7'> ,
which scales like 72/ for dust and 71/2 for radiation. For k = 1, we have
e Dust: a(7) = %1(1 — cosn)

1/2

e Radiation: a(7) = \/c2 [1 _ (1 B JC?)T

4.3 Hubble’s Law

0 9 are killing vector fields. Without

0
Photons follow null geodesics with tangent vector n’. Suppose that k = 0. Then, —, —,
Oz’ Oy’ 0z

loss of generality, assume

w(2)
v\ 3y

(9 b
&‘“”%w)

(4.7)

P2
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4.4 Particle Horizons 4 PHYSICS

Since the dot product of n;, with a tangent vector of a Killing field is preserved, we have
9\’ 9\’
= —0= il
i) |0 (3)

b
and ny (8) is proportional to the energy. Since we have photons, the dot product using the time-like vector and the
Tp

b
3o

space-like vector givs the same thing. Including the proportionality factor, we have

For our photon,

or
a(t2)  w(r) Ao

a(n)  w(r) A

So if a photon has a small wavelength (and high energy) when the universe was small, then it will have a long wavelength (and
a low energy) when the universe is big. This describes redshift, and is quantified by

%
—

where R is the distance between nearby galaxies, since we used a Taylor approximation.

4.4 Particle Horizons
This prompts the question: Looking back in time, can we see the whole big bang, or just part of it?

Lightcones are invariant under conformal factors. Conformal factors are functions of the metric that preserve the dot product.
So for k = 0, the FLRW metric has some the same lightlike surfaces as Minkowski space. Then the question becomes whether

the integral
t—/T ds
o a(s)

diverges or converges. If it diverges, then going to a finite 7 (i.e. in Minkowski space) gives us to an infinite ¢ (i.e. allowing us
to see the whole big bang). If it converges, then we can only see a finite part of the universe's past. This converges for both
dust and radiation. We can only see stuff inside the particle horizon, and this grows as time progresses. Therefore, as time
progresses, we can see more and more of the universe's past.

It turns out that if K = 1 and we are in a universe dominated by dust, then we can see the big bang at the maximum size of
the universe. If we are in a universe dominated by radiation, we can see the big bang at the big crunch.

4.5 Schwarzschild Solution

The Newtonian potential for a point source is
m

u(z) = —W
in n dimensions, where Au = 0. We seek a vaccuum solution to Esintein’s equation
Rop = 81Ty = 07

(except maybe at a point). We are also seeking a solution with a lot of symmetries.

20



4.5 Schwarzschild Solution

4 PHYSICS

o We call (M?, gqp) stationary if g, admits a Killing vector field £°.

This implies that we have time translation symmetry, so t — ¢ + §t should give the same metric.
e It is static if in addition, £“ is hypersurface orthogonal (£, V&)

This implies time reflection ¢ — —t symmetry.

e It is spherically symmetric if SO(3) generates a group of isometries on it.

The spherically symmetric condition tells us that there are three other spatial killing vector fields, so the orbit of x traces

out a two-dimensional sphere S? on the hyperplane at ¢ = 0 with a radius

r o VA.

They also rule out cross terms like dr df because if their components were nonzero, then the projection onto the 2-sphere
would have a nonzero direction, but the action of SO(3) rotation on any point gives a 2-sphere with no preferred direction.

The metric is therefore
ds* = —f(r)dt* + h(r) dr® 4 r? (d92 + sin? fa d¢2) .

Tetrad methods: Choose an orthonormal basis for each T),M for each p € M. Consider an orthonormal basis €, = (e, )* for

e {0,1,2,3}. Consider,
Opy = Wapy = (eu)bva(ey)b,
which are known as the Connection 1-forms. By orthonormal, we mean that
(en)(ev)a = v

and we can write,
&y = n"(en))ew)o-

Proof. Contract with (e,)° to get

The connection 1-forms are a lot like the Christoffel symbols but are antisymmetric in terms of its indices, i.e.
Oy = —Wyp-
The Riemann tensor can be written as,
Rl = RY,, = da) + d@f Adi,”,
where 7, is used to raise and lower greek indices. The derivative of the basis 1-forms is given by

s _ 3 > o
dé, =&, Nw,”.

We have not justified why these are true, but if we assume they are, we can use the above two formulas to find

what the connection 1-form is, and what the Riemann curvature tensor is. We will try to justify the formula

v __ 3~V ~0 ~V
R, =dw, + &, Aw,.
Recall that

Rabul/ - Rabcd(eu)c(el/)d
= (eu)c(vavb - vbva)(eu)c~

21



4.5 Schwarzschild Solution
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The first term can be written as,

(e#)cvavb(ev)c == va ((eu)cvb(eu)c) - va(ep)c + vb(ey>c
= Va(wpuw) — naﬁ[va(e#)f](ea)c(eﬁ)fvb(eu)c
= va(wb/_w) - naﬁwaﬁuwbau-

where we used 65 = 7P (eq)%(ep) s to get the second equality. Combining the first and the second term (which is taking

the anti-symmetry), we can identify the first term as dtildew,, and the second term as the wedge product.

Let us choose, _
(F0)a = ()7 (db)a
such that
éo =V f(’l“)(It
é1 = \/h(r)dr
ég = ’/‘d~9
&3 = rsin dg,
and their derivatives are
1 -
dég = 5f*1/2f’dt Adt
dé; =0
déy =dr Adf
dés =sinfdr Ad¢ 4+ rcosfdf Ade.
Using our formula for the derivative of basis 1-forms gives

1
2

One natural guess could be that &2 = @3 = 0 and

!
-1 1 f
wo—aldr+2(fh)1/2dt,

V2P QA dt = B2 dr A+ rdf A2 + rsindde A @S,

which would cause the first term to match, and the last two terms to be zero. Let's hope this is in agreement when we apply

the formula on the other terms. We get,

0=—eg Awj +ex Awl +ez Awd

— 0= —f2dt Aw} +7rdf Aw? +rsinfde A w?.
Letting a; = 0 and setting
w?=aydf +azdo
W= 240 + aydo
sin 6
makes the second equation true. For dés, we have

dr Adf = —fY2dt Aw? — b2 dr Aw? +rsinfdg A wd.

1
Substituting in the guesses we already made, we arrive at as = FRVER
a h1/2
Wi =— 2 dr + asde¢.
rsin @

Going to the last equation, we have,

sin@dr Adg+rcosfdf Adp = f/2dt Awd — b2 dr Awd —rdo AW

22
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4.5 Schwarzschild Solution 4 PHYSICS

sin 6
Plugging everything in, we get a3 = 0 and oy = RAVER a5 = —cos 8. In conclusion, we have our six connection 1-forms,
wi=0
wi =0
1 f
Wo = 5712
2(fmY
1
2 [ —
Wi= 97 do
3 sinf
wp = — h1/2 ddj
w3 = —cosfde
We can now compute the Riemann tensors. Since Rupu = —Rabwpu, We only need to compute the ones where 11 < v. Therefore,

- 1d !
Ry = dwj + w§ A w) <f> dr Adt

~ 2dr \(fn)'/?
/
P2 __ 2 o 2 _ 1 2 _ f
Ry = dwg + wg Aw, = wy Awy 77§f1/2hdt/\d0
- ) - 1 f'sind
3 3 o 3 1 3 _
Ro—dw0+w0/\wa—w0/\w1——gmdt/\dgb

_ 1

R? = dw? — W} Awd = §h*3/2h’ dr A d6

_ 1 1

R} = dw® + w? Awl = —cosOh™1/2d0 A do + 5 Sin Oh=32h dr A d¢ + cos Oh~2dO A dg = 5 sin 0h=32h' dr A d¢

N ind
Ry = dwi —wi Awd =sinfdd Adg — o

do A de = (1— 2) sin0do A dé.

We are looking for vacuum solutions, so the Ricci tensor needs to vanish. We have,

1 1 d( [ 1 f f'sing
_ 1 2 3_ * -~ - _
Foo = Howo™ + Hooo™ + Hoso™ = 5 pva g, <(fh)1/2> Yo nEn T g

1 1 d I 1 n
Riy = Rip” + Rizi® + Riz® = —= p 21
11 101 + 121”7 + Bz 2 (fh)1/2 dr ((fh)l/Q) + 2 h2r

. 1 f 1 h 1 1
Ros = Rsz = Ryp2” + Roio' 4+ Rosp® = —= = (1-=),.
22 33 202 + fl212” + Ii232 2rfh + 2 1h2 + r2 h’

Note that we have to evaluate Ré = Rupo" through its orthonormal basis. That is,

1
dt/\drzweo/\el

dt Ndf = eo N\ ez

1
Tf1/2
1
dr Adf = mel N es
drnd = hl/2rsin€61 Aes

d@Ad(;S: 62/\63

r2sin 6
We want the trace to be zero, so each of the R;; = 0. We have three equations and two unknowns, so we hope that they are
equivalent with each other! Adding the first two equations, we get

Pl o & gm0 — foe) = K
f h dr N Y
1
for some constant K. By rescaling time we can make K = 1. Therefore, h =1/f and I/ = —Ff’. The third equation gives,

0=—fr+(1—f) = (rf) = 1.
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4.5 Schwarzschild Solution 4 PHYSICS

Therefore, o
f = ]- + ]
T
and we have derived the Schwarzschild metric,
2M oM\
ds* = — (1 — ) dt* + <1 — ) dr? 4+ r%(d6? + sin® 0 d¢?), (4.8)
r r
where we identified C = —2M, derived such that when M is small, we get Newtonian gravity. Note that at r = 2M, 8815 and

o are not linearly independent. At first, Schwarzschild thought that this was no good since it is singular at this point, but it
r
turns out that we just need different coordinates to describe r = 2M.

A true physical singularity occurs at » = 0 (i.e. physical, curvature tensor blows up).

Outside the spherical mass distribution, such as a star, we have a vaccuum solution, so G4, = 0 = Rg;. Inside the star, the

Ricci tensors are
1 d / /
Roo = i(fh)flm* < / > + d

(fh)l/2 Tfh
1 1/2 d
R = Q(fh) rh2
1 f 1 h’ h
fop = M3 = =5 J;”h T T

and the scalar curvature is

R = —Rpo + Ri11 + Rao + Rss

_ 1/2d( f )_ P Ul 0
=-n o) " Sm et e

Assume the star is a perfect fluid, so the Einstein equation gives

Booo1-hTt 1 Y
Smp=Goo =Tt 2 <(1h)>

87TP = G11
8TP = G22 = G33.

The solution to the first equation gives

—r (1 — h(lr) = 2m(r)
— () =1 2”";(’")

Note that outside the star for p = 0, this agrees with the Schwarzschild solution. For » < R, the proper mass is

M, = /OR p(r)r? (1 — Qm(r)) o dr > m(R) = M.

r

Letting f = ¢*®, we get
d® _ m(r) + 4 m(r)
dr — r(r—2m(r)) r2 ’

so we get the Newtonian potential in the limit.
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4.6 Geodesics of Schwarzschild

Determining the geodesics may seem to be extremely complex, but because of the high degree of symmetries.

proper time (or affinely parametrerized) geodesic. Then

-K = <da O'—>g
where K € {0,1}. We have the symmetry 6 <> m — 6, allowing us to write
0(0) = /2, 6(0) = 0, 0(r) = g

We also have our Killing fields. The conserved quantities are

0. (. 2M
E<078t‘>gt(1r)

We can write,

0= (3-5) (2

K MK 1172_.7\4112
2 r 2r2 r3

Let o(7) be a

where the second term is the Newtonian potential, second term corrects for angular momentum, and the last term is the Einstein

correction. We have two cases,

e Case 1: K =1. We get
1 M L? 7ML2

V=g T s
We can find its critical points by setting V' (r) = 0, which gives
1
0=— (Mr? - L*r+3ML?),
r

which gives

L2+ VLY —12M2%L?
o oM

M (L2 M2
_2<M> 14 1—12<L) ,

Ry

2

so there can be two circular orbits for a given angular momentum L, given that — > 12, where one of them is the

standard Newtonian stable one, and the other one is closer to the central body and unstable.

We have,
E?(R
(2 +) _ V(Ry)
_1 M
2 R4
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5 APPENDIX C: MAPS OF MANIFOLDS

5 Appendix C: Maps of Manifolds
5.1 Pushforwards and Pushbacks

In this appendix, we will talk about maps of manifolds. If we have a map ¢ € C°(M,N), i.e. ¢ : M™ — N™, then tangent
vectors to M can be pushed forward through ¢ to N, and cotangent vectors to N can be pulled back through ¢ to M (unless
¢ is a diffeomorphism).

A tangent vector v € T, M pushes forward to
gb*v S T¢(X)N.

Note that Wald uses ¢* for pushforward and ¢, for pullback, which is the opposite of the standard notation. If f € C°(N)
then fo¢ € C(M). Then we also have
(@™ 0)(f) = v(f c 9).

Similarly, if 1 € Ty ;) N, then its pullback
Gupp € T M

(@xt)a(v?) = pa(¢™0)*,

for all v € T\ M. More generally for arbitrary tensors we can push forward any tensor with only up indices

(") % (1)ay = (Hk)ay, = T 7 (Puptr)ay = (Psfbh)ar s

or pull-back any tensor with only down indices Mixed index tensors T} present a problem unless ¢ : M — N is a diffeomorphism,

in which case .
¥4

1 eay 1 —1\k
(¢*T)a1 akbl-nb,,vbl .. .Ublual - ,u’;k = TN akb1~~~bl(¢z,u )al . ((¢ ) UZ) ,
which can also be interpreted as the Jacobian map from the coordinates on M to the coordinates on V.

Note that if ¢ : M — M and (¢*g)ap = gab, then ¢ is called an isometry. More generally if ¢*T = T for some tensor field T,
then ¢ is called a symmetry of 7' That is, if we have a physical theory on (M, T'(1),...,T(x)) and another physical theory on
(M',T(}),T(y), then they are equivalent (or same) if there is a diffeomorphism ¢ : M — M’, which pushforwards each Tj; to
T!..

ij

5.2 Lie Derivatives

Recall (at least on a compact manifold) a vector field v on a compact manifold M induces a 1-parameter group of diffeomor-
phisms

¢s: M — M
given by
s
Pe) — o(5,(2)
(;50(33) =,

locally in s. We can define the Lie derivative of a tensor field
T e T(k )
on M (in direction v) by

(@FT)0 Moy — Ty o

)

(ET 10, = Iy :

and it also satisfies the Leibnitz rule.

Lemma 3: Some properties of the Lie derivative:
(a) f T = f e C>®(M), then
Lyf =v(f)
(b) If T'=w € T(1,0) is a vector field, then
Low = [v,w]
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Proof. 1. Build a coordinate system on M where s is the first coordinate. Then,
QS—S("L‘la e 7:CTL) == (1‘1 - ta Ty 71:71,)'

The Jacobian of this change of variables is
(210 =07,

so
((bitT)ulmukmmw = Tmmukvl---vk (xl +it,x9, vxn)'
Plugging this back, we have
. f$1+8,$2,"'71'n _fxlwrQ?"'axn
£,(f) = tim L — )

is the standard directional derivative.

2. In these coordinates,
- oTr e,
(LT My = ———

SO

owt
ozl
1 Ow#

v Ozl
= Zvaawﬂ — waaﬂ
o - Ox® oz

(‘va)u =

a 1
where we recall that v¥ = () .

O

Once we can define the Lie derivative of functions and vector fields, we can define the Lie derivative of any tensor field through
duality.

Corollary 1:
(a) If weT(0,1), then
(Lop)a = vV eptq + vV o V°

(b) If T € T(k,p) on M, then
()

k ¢
(EVT)aln-ak by by — Ucchaln.akbl-ube _ ZTaln-c-nakbl.“bevc,Ua + ZTal...akbl.uc---bZVijc~
i=1 j=1
Proof. We only prove the first part. Given p, € 7(0,1) and w® € T(1,0), we have

Loy (paw®) = v(paw®) = vV (paw®)
= (V°V g )Wa + pqvVew?.

Since L, satisfies Leibnitz rule, we can also write this as

‘Cv (,u/awa) = ‘Cv (,u/a)wa + Ma‘c'u (wa)
= Ly(tta)W* + pg (0°V w0 —wV 0%).

Equating the two expressions for the Lie derivative gives us the desired relationship. O

5.3 Killing Vector Fields
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Definition: A vector field V“ on M is a kiling vector field if and only if V{,v;) = 0, for the Levi-Civita connection.

. d
Lemma 4: If v® is a killing vector field, and «y is a geodesic with tangent vector U® = ’Zi(T), then
T
d
E(vaua) =0

along 7.

Proof. Note that

d
— (v*u®) = u’Vy(vu®)
dr
= wPuVpvg + vaubViyu®
= Qubuav[bva]
=0.
Note that u®u® is symmetric and V[pvq) is antisymmetric, so the above expression is zero. O

We can also count symmetries. On R™, we have n translations and (2> rotations, for a total of n 4 (2) symmetries.

If v¢is a Killing field, we have
Ry va = Vo Ve — ViV a0,
= vavb'Uc + vac’l]a
Rgcavd = VpVevg + VeVaty
Rgabvd =V Vaup + Vo V.

Adding the second line and subtracting the third, we get

(Rgbc + Rgca - Rgab

)Ud = 2Vchva .
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