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Motivation

I Consider an inter-universe wormhole: allows for maximal symmetry

I Metric given by

ds2 = −e2Φ(r) dt2 +
dr2

1− b(r)/r
+ r2

(
dθ2 + sin2 θ dϕ2

)
, (1)
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I Connects the two universes at r = r0
I Universes can be identified by having two coordinate charts [r0,∞)

I Proper radial distance given by

`(r) = ±
∫ r

r0

dr√
1− b(r)/r

(2)

I Define radius of throat to be r(` = 0) = r0



Metric

ds2 = −e2Φ(r) dt2 +
dr2

1− b(r)/r
+ r2

(
dθ2 + sin2 θ dϕ2

)
,

Proposition 1: In some open neighbhourhood near the throat (r0, r∗), the following
inequality holds:

b′(r) <
b(r)

r
(3)



Curvature

I Stress energy tensor is T = diag(ρ, pr , p, p). Einstein’s equation gives at the
throat,

8πρ =
b′(r0)

r2
0

(4)

8πpr = − 1

r2
0

(5)

8πp =
1

2r2
0

(1 + r0Φ′(r0))(1 + b′(r0)). (6)

I Eqaution 4 gives

b(r) = b(r0) + 2

∫ r

r0

4πρr2 dr ≡ 2m(r) (7)



Energy Conditions

Proposition 2: At the throat of the wormhole, the following inequality holds:

ρ+ p ≤ 0. (8)

I Violates the null energy and weak energy condition,

ρ+ pi ≥ 0. (9)

I Turns out all energy conditions are broken. The average null energy condition
gives over any null curve Γ,

IΓ =

∫
Γ
(ρ− τ)ξ2 dλ = − 1

4π

∫ ∞
r0

1

r2
e−Φ(r)

√
1− b(r)

r
dr ≥ 0. (10)

I Only examples of energy conditions being broken are in QFT. Thus, modern
wormholes are typically a quantum gravity problem.



Traversability

Requirements:

I Traversable in a short amount of time.

I Weak tidal forces.

Tidal forces are the main problem, and we get the conditions:

|Φ′| ≤ 2gr0
(1− b′(r))L

v2 ≤ 2gr2
0

(1− b′(r))L



Constant Redshift Solution

Consider the case where Φ(r) = Φ0.

I Numerous possible shape functions, i.e.

b(r) =
√

b0r (11)

I This gives
ρ+ pr = −2p (12)

which is satisfied globally.



(Almost) Schwarzschild

Consider the metric

ds2 = −
(

1− r0
r

+
ε

r2

)
dt2 +

dr2

1− r0
r

+ r2
[
dθ2 + sin2 θ dϕ2

]
(13)

We can bound

IΓ > −
1

4πr0
(14)



[Extra] Neglected History

I Universe is a 3-sphere embedded in R4. Spatial part of metric is (taking a θ = π
2

slice)
dσ2 = R2

0

(
dψ2 + sin2 ψ dϕ2

)
(15)

I This surface is generated by a curve. Let z point in direction of axis of rotation,
and R point in the direction perpendicular to z , in the same plane as circle.

dz

dr
= tanψ (16)

I For a Schwarzschild metric, spatial part is

dσ2 =
dr2

1− 2M/r
+ r2 dϕ2 . (17)

I Consider the substitution

cos2 ψ = 1− 2M

r
(18)
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[Extra] Neglected History
Solving the differential equation

dψ

dr
=

√
2M

r − 2M
(23)

gives
z2 = 8M(r − 2M), (24)

which is plotted in the figure below, for the case M = 1.
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