
ECE253 Final Cheatsheet
Author: your mother

Boolean Algebra
De Morgan’s Theorem tells us

x · y = x + y, x + y = x · y (1)

Inverting the inputs to an or gate is the same as inverting
the outputs to an and gate, and the other way around.
We also have:

• (x + y)(y + z)(x + z) = (x + y)(x + z)

• x + yz = (x + y)(x + z)

• x + xy = x (Absorption)

• xy + xy = x (Combining)

• (x + y)(x + y) = x

• x + xy = x + y

• x(x + y) = xy

• xy + yz + zx = xy + zx (Consensus)

Gates

AND OR NOT

NOR NAND XOR

SOPs and POSs

We can create boolean algebra expressions for truth
tables.

Minterm: Corresponds to each row of truth table, i.e.
m3 = x2x1x0 such that when 3 = 0b011 is substituted in,
m3 = 1 and m3 = 0 otherwise.

Maxterm: They give Mi = 0 if and only if the input is
i. For example, M3 = x2 + x1 + x0.

SOP and POS: Truth tables can be represented as a
sum of minterms, or product of maxterms.

• Use minterms when you have to use NAND gates
and maxterms when you have to use NOR gates.

• When converting expressions to its dual, it’s often
helpful to negate expressions twice, or draw out
the logic circuit.

Cost
The cost of a logic circuit is given by

cost = gates + inputs (2)

If an inversion (NOT) is performed on the primary inputs,
then it is not included. If it is needed inside the circuit,
then the NOT gate is included in the cost.

Karnaugh Map
Method of finding a minimum cost expression: We can
map out truth table on a grid for easier pattern
recognition. Example of a four variable map is shown
below:

x2x1

x4x3

00 01 11 10

00

01

11

10

1 1 1

1 1 1

1

11

1

0

0

0 0

0 0

and the representation is x2 · x4 + x2 · x1 + x4 · x2 when
using minterms. To use maxterms, we take the
intersection of sets that don’t include blocks of 0s. For
example, (x2 · x1)(x2 + x1 + x4). Some rules:

• Side lengths should be powers of 2 and be as large
as possible.

• Use graycoding: adjacent rows/columns should
share one bit.

Minimization Procedure

1. Generate all prime implicants for given function f

2. Find the set of essential prime implicants

3. Determine the nonessential prime implicants that
should be added.

Common Logic Gates
• Mux 2→1: mux2to1(s, x0, x1) = sx0 + sx1

• Not: not(x)=nand(x,x)=nor(x,x)

• XOR acts as modular arithmetic.

• Multiplexers are functionally complete.
AND = mux(x, y, 1), OR = mux(x, 0, y).

RS Latch
Sequential circuits depend on sequence of inputs. A SR
Latch are cross-coupled NOR gates.

Q

Q

R

S

S R Q Q

0 0 0/1 1/0
0 1 0 1
1 0 1 0
1 1 0 0

When S = R = 0, it stores the
last Q value. In practice, we
should not have S = R = 1.

Gated D Latch and Clock Signal

Clk

Q

Q

D

Clk Q(t + 1)

0 Q(t)
1 D

D Flip Flops
Consists of two gated D latches, connected in series and
both connected to the same clock. However, clock input
for the first D latch is inverted. When the clock rises up,
Q stores value of D.

T Flip Flops
clk Q(t + 1)

↑ T^Q(t)

Verilog

Logic Operators

bitwise AND & bitwise OR |

bitwise NAND ~& bitwise NOR ~!

bitwise XOR ^ bitwise XNOR ~^

logical negation ! bitwise negation ~

concatenation {} replication {{}}

• reduction operators are put at the start and
output a scalar.

• bitwise operators

• blocking assignment =: executed in the order
they are specified.

• Nonblock assignments <= executed in parallel.

Case Statements

module mux(MuxSelect, Input, Out);

input [4:0] Input; input [2:0] MuxSelect;

output Out;

reg Out; // declare output for always block

always @(*) // declare always block

begin

case (MuxSelect[2:0]) // start case statement

3’b000: Out = Input[0]; // case 0

// ...

3’b100: Out = Input[4]; // case 4

default: Out = 1’bx; // default case

endcase end endmodule

Half Adder

module HA(x, y, s, c);

input x, y; output s, c;

assign s = x^y;

assign c = x&y;

endmodule

Full Adder

module FA(a, b, c_in, s_out, c_out);

input a, b, c_in; output s_out, c_out;

wire w1, w2, w3;

HA u0(.x(a), .y(b), .s(w1), .c(w2));

HA u1(.x(c_in), .y(w1), .s(s_out), .c(w3));

assign c_out = w2|w3;

endmodule

D Flip Flop
module D-ff(D, clk, Q);

input D, clk;

output reg Q;

always@(posedge clk) Q <= D; // use <= operator

endmodule

T Flip Flops
module t_ff(Clock, T, Clear_b, Q);

input Clock, Clear_b, T;

output reg Q;

always @(posedge Clock, negedge Clear_b)

begin

if (Clear_b == 1’b0) Q <= 0;

else Q <= T^Q;

end

endmodule

Registers
module reg8(D, clk, Q);

input clock;

input [7:0] D;

output reg[7:0] Q;

always@(posedge clock)

Q <= D;

endmodule

ModelSim Do Files
set working dir, where compiled verilog goes

vlib work

compile all verilog modules in mux.v to working

dir could also have multiple verilog files

vlog mux.v

#load simulation using mux as the

top level simulation module

vsim mux

#log signals and add signals to waveform window

log {/*}

add wave {/*} would add all items in

top level simulation module

add wave {/*}

set input values using the force command

signal names need to be in {} brackets

force {SW[0]} 0

force {SW[1]} 0

run 10ns

ModelSim and Other Lab Things

• FGPA: Field Programmable Gate Array

• To repeat signals, use this syntax:

force {MuxSelect[2]} 0 0ns, 1 {4ns} -r 8ns

which starts at 0 at 0ns, 1 at 4ns, and repeats
every 8 ns.

• On the DE1-SoC board, hex thing is red if 0 and
white if 1.

Frequency Dividers
• To half the frequency, connect Q to D on the same

gated D latch.

• To quarter the frequency, connect Q to the clock of
the next gated D latch (which is set up the same
as the half frequency case).

• To reduce frequency by 2k, connect k D latches
connected in series (D to Q) and to the same
clock. First D is connected to last Q̄. The last Q
will have a reduced frequency of 2k.

Resets
• Active High/Low: Resets when Signal is 1/0

• Synchronous High/Low: Resets during
positive/negative edge

Finite State Machines

Steps
1. State Diagram

2. State Table

3. State Assignment

4. State-Assigned Table

5. Synthesize Circuit

6. Celebrate!

Step 1: State Diagram Example

Step 2: State Table Example
Present State Next State Output (z)

A A B 0
B A C 0
...

...
...

...
G A C 1

Step 3: State Assignment Example
• Using one-hot encoding: Choose number of flip

flops: 7 (since 7 states)

• Choose state codes:

– A = 0000001, B=0000010, . . . , G=1000000

Alternatively use 3 flip flops to represent state codes as
000, 001, 010, etc.

Step 4: State-Assigned Table Example
By convention, use y for input and Y for output.
y3y2y1 Y3Y2Y1 (W = 0) Y3Y2Y1 (W = 1) z

000 000 001 0
001 000 010 0

...
...

...
...

110 000 010 1

Step 5: Synthesize Example
We first write boolean algebra expressions for the outputs
Yn = fn(y1, y2, y3,W) and z = g(y1, y2, y3). For each flip
flop i, the input is Yi and the output is yi. The output
then branches off into two paths:

• The first path goes into the function g(y1, y2, y3)
and leads to output z

• The second path goes into the function
fnm(y1, y2, y3,W) and loops back to Yn.

The D flip flops are connected to same clock and reset
signal.

Execution in Verilog
module FSM(input Clock, input Resetn, input w,

output z, output [3:0] CurState);

reg [3:0] y_Q, Y_D;

localparam A=4’b0000, B=4’b0001, ... , G=4’b0110

always@(*) // State Table

begin: state_table

case: (Y_Q)

A: begin

if (!w) Y_D = A; else Y_D = B;

end

// ...

G: begin

if (!w) Y_D = A; else Y_D = C;

default: Y_D = A;

endcase

end

always @(posedge Clock) // State Registers

begin: state_FFs

if(Resetn == 1’b0) y_Q <= A;

else y_Q <= Y_D;

end

// Output Logic

assign z = ((y_Q == F) | (y_Q == G));

assign CurState = y_Q;

endmodule

ARM Assembly

Registers
• R0-R3: Scratch Registers: will be overwritten by

subroutines.

• R4-R12: Preserved Registers: stack before using,
restore before returning

• R13 (SP): Stack Pointer: points to top of stack

• R14 (LR): Link Register (Points to return address
when BL is executed

• R15 (PC): Program Counter: Holds address of
next instruction to execute

Instructions
Let r0=1, r1=2, r2=#0b1010.

Instruction Example Result
MOV mov r3, #3 r3 = 3

ADD add r3, r0, r0 r3 = 1 + 1

SUB sub r3, r0, r0 r3 = 1 - 1

MUL mul r3, r0, r0 r3 = 1 * 1

LSL lsl r3, r2, #1 r3 = #0b0100

LSR lsr r3, r2, #1 r3 = #0b0101

ASR asr r3, r2, #1 r3 = #0b1101

AND and r3, r1, r0 r3 = (1 and 2) = 0

Memory Stuff
• BL:Branch Link: Goes to a branch but updates LR

• Stacks: PUSH {R0, R1} pushes R0,R1 to a stack
where R0 is at the top. Last in First Out.

• Each instruction is a place in memory, with
addresses going up by 4 bytes.

• Addresses of inputs are stored in the memory
immediately after the instructions.

Load and Store
• LDR Ra, [Rb], #offset: value at [address] found

in Rb is loaded into register Ra. Then the [address]
is incremented by offset.

• STR Ra, [Rb], #offset: value found in register
Ra is stored to [address] found in Rb. Then the
[address] is incremented by offset.

• LDR Ra, =LIST Makes Ra contain the address to
the first element of the input variable.

Fancy Stuff:

• LDR Ra, [Rb, #offset] is pre-indexed (doesn’t
change Rb)

• LDRB - load byte (8 bits, which is 2 hex letters)

• LDRSB - signed load byte (LDRB but gives sign
extension to result to make it 4 bytes while
retaining the sign)

• LDRH - load halfword (for [R3, #n], n must be
even)

• LDRSH - signed load halfword

The same applies for STR, but no signed versions.

Flags
N C V Z

negative carry overflow zero

Conditionals
CMP R0, R1 computes R0-R1 and updates flag. We can
append conditionals after instructions to act as if-then
statements:

EQ == NE 6= GT ¿
GE ≥ LE ≤

Interrupts

1. Provide Exception Vector Table (When an
exception occurs, the processor must execute
handler code that corresponds to the
exception. The location in memory where the
handler is stored is called the exception
vector.)

2. Initialize SP for IRQ mode, then initialize SP
for SVC mode.

3. Configure GIC to enable interrupts (code
given)

4. Enable interrupt generation in I/O device.

5. Set I=0 in CPSR.

6. Provide IRQ Handler code which queries GIC
to determine source of interrupt.

7. Provide interrupt service routines (ISRs), i.e.
KEY_ISR

8. The interrupt handler must clear interrupt
from GIC.

ARM Assembly Example Code

Enabling Interrupts
// SP for IRQ

MOV R0, #0b11010010

MSR CPSR, R0 // Now in IRQ mode

LDR SP, =0x20000 // IRQ SP

// SP for SCV

MOV R0, #0b11010011

MSR CPSR, R0 // Now in SVC mode

LDR SP, =0x3FFFFFFC

// Skey enable

LDR R1, =0xFF20058 // mask keys

MOV R2, #0b1001 // enable for key3, key0

STR R2, [R1] // store to enable interrupts

// Enable Interrupts

MOV R1, #0b01010011 // enable in SVC mode

MSR CPSR, R1

Check Cause of Interrupt
SERVICE_IQR:

PUSH {R0-R5, LR}

LDR R4, =MPCORE_GIC CPUIF

LDR R5, [R4, #ICCIAR] // makes R5 interrupt ID

CMP R5, #73 // check if key has ID 73

BNE ERROR

BL KEY_ISR // must be a key IRQ, BL to subroutine

B EXIT_IRQ // exit after handling IRQ

ERROR:

B ERROR // unknown IRQ

EXIT_IRQ:

STR R5, [R4, #ICCEOIR]

POP {R0-R5, LR}

SUBS PC, LR, #4

Subroutine to Deal with Interrupts
KEY_ISR:

PUSH {R1-R5}

LDR R5, =CURR_VALUE // address of curr_value

LDR R4, [R5] // current value to R4

LDR R2, =0xFC20005C // edge capture address

LDR R3, [R2] // edge capture value

CMP R3, #0b1000 // check if key 3

BNE KEY0 // if not key3, must be key0

CMP R4, #0 // check if curr_value 0

BEQ ENDISR // branch if 0

SUB R4, R4, #1 // decrease value

STR R4, [R5] // store

B ENDISR

KEY0:

// code for key 0

ENDISR:

POP {R1-R5}

MOV PC, LR

Polled IO with Timer
.text

.global_start

_start:

LDR R0,=0xFFFEC600 //load base address of timer

LDR R1,=200000000 //200 million -> starting time

STR R1,[R0] //load time into base address of timer

MOV R1,#0b111

STR R1,[R0,#8] //A=E=1

MOV R4,#0 //seconds

MOV R5,#0 //minutes

MOV R6,#0 //hours

POLL:

LDR R1,[R0,#12] // Load F bit. It’s offset

from base address by #12

CMP R1,#0

BEQ POLL //If the F bit is 0, then continue polling.

STR R1,[R0,#12] // Plug 1->F bit to reset F bit.

R0 has base address

ADD R4,R4,#1 //Increment seconds

CMP R4,#60 //Have we hit 60s?

BNE POLL //If we haven’t continue polling.

MOV R4,#0 //If we have hit 60, move 0 into seconds

ADD R5,R5,#1 //And then increment minutes

CMP R5,#60 //Then we check if minutes have hit 60

BNE POLL //If they haven’t, continue polling

MOV R5,#0 //If they have, set the minutes to 0

ADD R6,R6,#1 //And then increment hours

CMP R6,#24 //Then we check if the hours have hit 24

BNE POLL //If they haven’t, continue polling

MOV R6,#0 //If they have, set the hours to 0

B POLL //Continue polling

Exception Vector Table
0x0 Reset exception (branch to _start)

0x18 B to IRQ_HANDLER

Find Sum with Recursion
.global _start

_start:

LDR SP, =0x20000

LDR R4, =N

LDR R0, [R4]

MOV R1, #0

BL FINDSUM

ADD R1, R1, R0

END: B END

FINDSUM:

PUSH {R0, LR}

CMP R0, #2

BLT RETURN

SUB R0, R0, #1

BL FINDSUM

ADD R1, R1, R0

RETURN:

POP {R0, PC}

.data

N: .word 5

Fibonacci with Recursion
.data

N: .word 10

.text

.global _start

_start:

LDR SP, =0x20000

LDR R4, =N

LDR R0, [R4]

MOV R1, #0

MOV R2, #0

BL FIB

END: B END

FIB:

PUSH {R0, R2, LR}

CMP R0, #2

BGE RECUR

MOV R1, R0

POP {R0, R2, PC}

RECUR:

SUB R0, #1

BL FIB

MOV R2, R1

SUB R0, #1

BL FIB

ADD R1, R2

POP {R0, R2, PC}

	Boolean Algebra
	Gates
	SOPs and POSs
	Cost
	Karnaugh Map
	Minimization Procedure

	Common Logic Gates
	RS Latch
	Gated D Latch and Clock Signal
	D Flip Flops
	T Flip Flops
	Verilog
	Logic Operators
	Case Statements
	Half Adder
	Full Adder

	D Flip Flop
	T Flip Flops
	Registers
	ModelSim Do Files
	Frequency Dividers
	Resets

	Finite State Machines
	Steps
	Step 1: State Diagram Example
	Step 2: State Table Example
	Step 3: State Assignment Example
	Step 4: State-Assigned Table Example
	Step 5: Synthesize Example
	Execution in Verilog

	ARM Assembly
	Registers
	Instructions
	Memory Stuff
	Load and Store
	Flags
	Conditionals
	Interrupts

	ARM Assembly Example Code
	Enabling Interrupts
	Check Cause of Interrupt
	Subroutine to Deal with Interrupts
	Polled IO with Timer
	Exception Vector Table
	Find Sum with Recursion
	Fibonacci with Recursion

