
QiLin Xue, xueqilin, 1007000610, Group: 1910E

Automated Speakers to Enhance Plant Growth by Playing
Classical Music

I. INTRODUCTION

Studies have shown that exposing plants to
classical music at sunrise can encourage plant
growth[1][2]. Despite the compelling evi-
dence that supports this research, our team
found little to no solutions on the market
aimed towards either personal gardens or
greenhouses. In this project, we aim to ad-
dress this gap by creating a prototype widget
that will automatically play classical music at
sunrise and can be integrated into an existing
garden as effortlessly as possible.

II. CONCEPTUAL DESIGN

PROCESS

We framed our opportunity as designing a
system that plays music to the plant at dawn,
as this is proven to facilitate the growth of the
plant. Specifically, sunrise will be detected
by the photoresistor, and the music will be
played by the buzzer. If the music is acci-
dentally played, it could be turned off by the
button manually. This button acts only as a
failsafe, and we approached our design with
the goal of reducing the likelihood of music
being accidentally played.

Our system consists of a buzzer, button, and
photoresistor. To achieve our goal of easy as-
sembling, we placed the buzzer and the pho-
toresistor on different sides of the Pico so the
wires would be easily installed. For the cover
of the plate, as we valued usability and the
long life of the device, we designed a chim-
ney for the photoresistor to protect it from
breaking and left a large enough opening for
the button that fitted human fingers. The
schematic of the circuitry is shown in figure
1.

FIG. 1: The circuit diagram we modelled our

circuit off of. The blue wires show connections

to ground, red show connections to power, and

purple show connections between individual

components. The three gray translucent

components are (from top to bottom): buzzer,

button, photoresistor. A 1K resistor was used.

A. Control System

To prevent false positives and false negatives,
which will in turn reduce the need for human
intervention, we needed a method to ignore
momentary periods of darkness and daylight,
and not register those as an additional night-
day cycle.

We used two methods to accomplish this.
First, to prevent rapid fluctuations near the
transition from nighttime and daytime, we
implemented a high and a low threshold. The
light level is set to high if it goes above a cer-
tain threshold and is set to low if it goes be-
low another, different threshold. If the light
level is in between, it will take on the value
of what it was previously set to.

Secondly, it will only register a change in day-
time and nighttime if 30 minutes have passed
continuously at the new light level. By doing
so, briefly covering the sensor with a hand
and uncovering it (such as by accident), will

1



QiLin Xue, xueqilin, 1007000610, Group: 1910E

not make the system believe there is another
sunrise. This is illustrated below, where each
“tick” represents 15 minutes.

III. IMPLEMENTATION

A. CAD Model

The structural component was adapted from
our existing work with greenhouse widgets,
specifically a multimodal lighting system. In-
stead of having two holes in the case for
LEDs, we had a large hole for the piezo
buzzer, and a chimney-like structure for the
tall photoresistor. As we value efficiency,
we used the straightforward method of using
screws to fasten the lid to the main body as
shown in the CAD figure below. One qual-
itative observation from previous work was
that the hole for the button may be a bit
too small and not be a comfortable fit for
all fingers. To demonstrate greater empathy
towards the stakeholders, we have tried our
best to make the spacing around the button
as big as possible to reduce awkwardness.

B. Asynchronous Functions

The program was based on the UML diagram
shown in the diagram below. Two sensors:
a button and a photoresistor are constantly
reading data (in the form of the light level
and if the button is pressed or not), and con-
stantly communicating this information to a
Controller class, which adjusts global vari-
ables.

There is another function that reads these
global variables and plays music depending
on the values of these variables and how
these variables change. All three tasks need
to be performed concurrently, so we needed
to incorporate asynchronous programming.
Two common ways of handling asynchrony
are via threading or interrupts, but neither
is supported by CircuitPython[3]. Fortu-

nately, CircuitPython recently introduced a
package called asyncio that can perform the
same tasks as other methods, which is what
we used at the end[4]. The pseudocode is
shown below, which describes how the button
and photoresistor values change the relevant
global variables, and how the music player
uses these global variables. Note that while
the button acts as a power off switch, what it
does in practice is change the volume to zero.
Once the next song plays (i.e., the next day),
the volume is set to its default value.

C. Playing Music

Another major feature of our system is a sim-
ple and straightforward implementation of
encoding music and outputting it through the
piezo buzzer. Using open-source code writ-
ten by Charles Grassin and Stuart Memo, we
were able to convert musical notes written in
scientific pitch notation (where C4 represents
middle C) to numerical frequencies[5]. We
then modified the tone function from the Cir-
cuitPython package simpleio, to play a speci-
fied note for a specified duration at a specified
loudness[6].

IV. EVALUATION

A. Verification

Due to the limited time span to work on
this project, it is impractical to test this sys-
tem with real inputs, since sunrise only hap-
pens once a day. Instead, we simulated day-
time and nighttime by placing our hands over
the photoresistor and reducing the time delay
from 30 minutes to 5 seconds. We then cal-
ibrated the low and the high threshold from
the photoresistor value when it is covered and
uncovered.

By nature, it is difficult to test a combina-
tion of asynchronous functions. This is be-
cause not only does the order of the inputs

2



QiLin Xue, xueqilin, 1007000610, Group: 1910E

FIG. 2: Diagram showing how the day is distinguished from night from the photoresistor data.

First, the light level is either set to high or low depending on two thresholds, and after two ticks

(30 minutes) on high light, the time is set to day. After two ticks on low light, the time is set to

night. If there are fluctuations in between, the system ignores it.

FIG. 3: CAD model of the widget case, where

the breadboard is visible and the circuit

components are not visible. The lid is

transparent for visibility. The failsafe button

goes in the center of the rectangular opening

near the bottom.

matter, but the specific timings also matter.
Therefore, we cannot test every single possi-
bility unlike our previous projects. Instead,
we tested the most valuable features that we
expect to see:

• Under ideal situations, the system
works as expected and the song only
plays during sunrise.

• Whenever the buzzer plays a noise,
pressing the button will always sup-
press it.

We also tried to test for edge cases, such as
trying to time the button press and the mu-
sic playing at the same time, and more. For-
tunately, in all the edge cases we tried, the
system works exactly as behaved.

The case also meets the technical require-
ments set for this project. Namely, plac-
ing it in different orientations and shaking it
around does not affect the circuitry. We car-
ried the system inside our bag to and from
university for several days, and never had an

3



QiLin Xue, xueqilin, 1007000610, Group: 1910E

FIG. 4: A UML diagram of how various components interact with each other. Both the

photoresistor and button is constantly reading data and updating the Controller class when

necessary. These tasks still occur even when the music is being played.

FIG. 5: Pseudocode that shows how data is being processed in the button and the conditions in

which the music should be played. Refer to figure 2 for how the photoresistor processes data.

issue with parts falling out.

B. Technical Issues

There were several technical issues that we
encountered through the project, though we
were able to address all of them. One issue
we came across was that a näıve function that
plays music by systematically changing the

buzzer frequency and waiting a set amount
of time cannot be interrupted by other func-
tions. It will need to finish the song before
any other part of the code can run. While
other microcontroller compilers such as Mi-
cropython have built-in interrupt handlers,
the CircuitPython compiler, which we are re-
quired to use, does not[7].

To resolve our problem, we consulted with

4



QiLin Xue, xueqilin, 1007000610, Group: 1910E

other people in the Adafruit CircuitPython
discord, where we were given advice of how
to proceed with the functionalities of Circuit-
Python. This was an extremely challenging
part of the project, as none of our team mem-
bers had worked with asynchronous program-
ming before, so it was a new experience for
all of us.

Another issue we encountered was that the
specific buzzer was only able to play mono-
phonic tones. That is, only a single frequency
can be played at the same time and there-
fore limiting us to simple songs, such as the
famous melody from Beethoven’s Fur Elise.
While this problem can be solved by intro-
ducing other buzzers, there are certain tricks
one can use to play polyphonic tones on a
single buzzer by carefully adjusting the duty
cycle. However, the degree of control these
techniques need is not available for us. If this
project is continued, we would like to invest
in a more powerful buzzer, or perhaps even a
speaker.

V. INDIVIDUAL CONTRIBUTIONS

Everyone had an equal contribution in the
conceptual design phase. Chris, Julia, and
I worked on the CAD model together while
Hamshi and Annoah worked on planning out
and building the circuit. We also worked on
the initial programming part together during
studio and worked out and implemented the
logic shown in figure 2. Julia and a few others
attempted to work on the interrupt capability
of the button, but found that several pack-
ages were incompatible with CircuitPython.
I picking up from where Julia ended by ask-
ing for advice through the Adafruit discord
and was able to finish the programming part.
I also made all the diagrams shown in this
document.

VI. REFLECTION

The biggest thing that I learned and was
new to me was asynchronous programming.
This was always an area that fascinated me,
and is closely related to my first exposure
to programming via Scratch in grade 6. I
was able to have several while loops running
concurrently and communicate between them
by sending “messages,” allowing me to make
many games. When I eventually moved to
more mature languages such as Javascript,
Java, and Python, I was very surprised that
I was no longer able to run several pieces
of code at the same time and communicate
between them. Therefore, learning asyn-
chronous programming was always a goal of
mine, and this widget lab finally gave me an
excuse to learn it. While it sounds very dull,
it was truly an extremely exciting experience
for me!

Something that really helped my learning
was talking to other people and asking peo-
ple for their opinions and advice. This was
true for learning asynchronous programming,
which I have talked about several times in
this paper already, but also for other parts.
I originally thought that implementing a sys-
tem that wouldn’t be sensitive to brief fluc-
tuations of light levels would be extremely
difficult, but after talking it over with my
group, we found another way to look at the
problem that made it almost obvious! Simi-
larly, I consulted my peers outside the group
for thoughts on the audio capabilities of the
buzzer. Both peers I consulted had experi-
ence working with audio but they disagreed
about the capabilities of the buzzer. One
thought that it was impossible to play poly-
phonic tones while the other thought that
with some clever tricks, it was possible to
play polyphonic tones on anything. Through
these discussions, I learned a lot about au-
dio, electronics, and the fundamental physics
of how speakers worked!

The audio part of this project was related to

5



QiLin Xue, xueqilin, 1007000610, Group: 1910E

a past project I did last semester, where my
team and I tackled the problem of polyphonic
piano transcription (audio to MIDI file) via
machine learning, specifically via the use of
Transformers. One of the major parts of that
project was working with different represen-
tations of music, and that experience helped
a lot when I was making an intuitive inter-
face for processing music. In the future, I
would like to make the feature even more in-
tuitive by taking in a MIDI file as an input.
The main reason I didn’t do that was because
MIDI files are often polyphonic and in order
to generate monophonic sound, I would need

to pick out the most important notes. There
is no simple algorithm to do so, which is why
I didn’t attempt it this time.

In ECE253, we also learned about interrupts.
Initially I was very excited to apply my past
knowledge about interrupts to this project.
Unfortunately, CircuitPython does not sup-
port interrupts, and I was forced to find an-
other way. Regardless, I found it very inter-
esting how there can be several solutions to
the same problems and how different devel-
opers can all think that their approach is the
more superior.

[1] V. Chivukula and S. Ramaswamy, “Effect

of different types of music on rosa chinen-

sis plants,” International Journal of Envi-

ronmental Science and Development, vol. 5,

pp. 431–434, Oct. 2014.

[2] K. Creath and G. E. Schwartz, “Measur-

ing effects of music, noise, and healing en-

ergy using a seed germination bioassay,” The

Journal of Alternative and Complementary

Medicine, vol. 10, pp. 113–122, Feb. 2004.

[3] K. Rembor, “Circuitpython: Frequently

asked questions.” AdaFruit, Mar 2022.

[4] D. Halbert, “Cooperative multitasking in cir-

cuitpython with asyncio.” AdaFruit, 2022.

[5] S. Memo and C. Grassin, “Note to fre-

quency.” GitHub, 2020.

[6] S. Shawcroft, “Simpleio - simpler, beginner

friendly io.” Read the Docs, 2017.

[7] P. Sokolovsky, “Micropython: Writing inter-

rupt handlers.” Read the Docs, Mar 2022.

6


	Automated Speakers to Enhance Plant Growth by Playing Classical Music -10mm
	Introduction
	Conceptual Design Process
	Control System

	Implementation
	CAD Model
	Asynchronous Functions
	Playing Music

	Evaluation
	Verification
	Technical Issues

	Individual Contributions
	Reflection
	References


