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1 RING THEORY

1 Ring Theory
1.1 Eisenstein’s Criterion

Lemma 1: Eisenstein’s Criterion: Of f(x) ∈ Z[x],

f(x) = xn + an−1xn−1 + · · ·+ a1x + a0,

and if p is a prime such that p|ai for all i = 0, 1, . . . , an−1 but p2 does not divide a0 then f is irreducible.

Proof. Suppose
f(x) = (xk + bk−1xk−1 + · · ·+ b1x + b0)(x` + c`−1x`−1 + · · ·+ c1x + c0).

Then take the constant term a0 = b0c0. One of b0, c0 is not divisible by p so WLOG let b0 not divisible by p. Modulo p, we
have

f(x) = xn

= (xk + · · ·+ b0)(x` + · · ·+ 0)
= xk + · · · ,

where b0 is nonzero mod p. Whichever coefficient is nonzero mod p with the highest power of x (other than xk, x`) will give a
nonzero term in the product.

NB: There is some subtlety to this last step. We should consider the term where we multiply bn by the lowest nonzero term in
the second factor. Then we can show there is no other term with the same degree that can cancel it out.

For example, for any odd prime p,

f(x) := xp − 1
x− 1 = xp−1 + xp−2 + · · ·+ x + 1.

Now consider f(x + 1). Then,

f(x + 1) = (x + 1)p − 1
x

= 1
x

(
xp + pxp−1 +

(
p

2

)
+ · · ·+ px

)
= xp−1 + pxp−2 +

(
p

2

)
xp−3 + · · ·+ p.

Note that all the binomial coefficients are divisible by p. The constant coefficient is p, so f(x + 1) is an Eisenstein polynomial,
and therefore it is irreducible. We can now extend Eisenstein’s Criterion to be in general,

Theorem: Eisenstein’s Criterion for UFD: If R is a UFD, and f(x) ∈ R[x], is such that there is some prime ideal P such
that f is monic but all its coefficients except the first are in P and the constant term is not in P 2, then f is irreducible.

Theorem: If F is a field, then the maximal ideals in F [x] are of the form (g(x)), where g(x) is irreducible.

That is, F [x]/(g(x)) is a field if and only if g(x) is irreducible. This implies that

Q[x]/(x2 + 1) (1.1)

is a field since x2 + 1 has no roots in Q. Similarly, R[x]/(x2 + 1) is a field, and we can conclude that

R[x]/(x2 + 1) = (1̄, x̄) ∼= C, (1.2)

with x̄2 = −1.

If f(x) ∈ F [x], we can factor it as
f(x) = pa1

1 pa2
2 · · · par

r , (1.3)
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1.2 Noetherian Rings 2 MODULES

with pi(x) ∈ F [x] are irreducible. Let us assume that the pis are distinct. By the Chinese Remainder Theorem,

F [x]/(f(x)) ∼= F [x](p1(x)a1)× · · · × F [x]/(pr(x)ar ).

We’ll come back to this later.

Proposition 1: If a1, . . . , ar are roots of f(x), then f(x) ∈ F [x] is divisible by (x− a1)(x− a2) · · · (x− ar).

While quite simple, this leads to an interesting corollary,

Corollary 1: Given any field F, any finite subgroup of H of the multiplicative group F × of F must be cyclic.

We know that, from the classification of finite abelian groups,

H ∼= Cm1 × Cm2 × · · · × Cmk
(1.4)

where m1|m2| · · · |mk. Every element of x ∈ Cmk
satisfies xmk = 1. But since mi|mk, we also know that xmk = 1 is also true

for any x ∈ Cmi
.

If k > 1, there are more than mk roots of xmk − 1, so we have a contradiction, and we must have k = 1.

Corollary, the multiplicative group of any finite field is cyclic.

1.2 Noetherian Rings

Definition: A ring R is Noetherian if every ideal I is R if finitely generated.

As a non-example, F [x1, x2, . . . ] with an infinite number of variables is not Noetherian as I = (x1, x2, . . . ) is the ideal of
polynomials with constant coefficients is not finitely generated.

Theorem: Hilbert’s Basis Theorem: If R is Noetherian, then R[x] is Noetherian.

2 Modules

Definition: Suppose R is a ring. A module M is an abelian group (M, +) equipped with an action of R

R×M →M, (r, m) 7→ rm, (2.1)

such that
(i) (r + s)m = rm + sm
(ii) r(m + n) = rm + rn
(iii) (rs)m = r(sm)
(iv) If R has identity, then 1m = m.

Note that if R has no identity, rm = 0 for all r, m is a possibility.

To be specific, the above is a left module, but the same thing can be applied to a right module. If M is an R-module, a
submodule is a subgroup N ≤M (relative to +) such that rn ∈ N∀r ∈ R, n ∈ N.

Some examples,

• If R is a ring, then it is a module over itself. Submodules are then ideals.

• If R = F is a field, then any F -module V is a vector space over F. However, we should not expect modules to be like
vector spaces in general. If we write Rn = (r1, . . . , rn) = R× · · ·R with componentwise addition and multiplication, Rn

is an R-module, called the free R-module of rank n.

• Suppose that R = Z. Then any Z-module M is an abelian group, and vice versa (i.e. the conditions don’t add any extra
structure)
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• Suppose F is a field, V is a vector space over F and T : V → V is an F -linear operator. Then V becomes a F [x]-module
by letting

xv = Tv, (anxn + · · · a1x + a0)v = anT nv + · · ·+ a1Tv + a0v (2.2)

Note that F [x] has many module structures on V, one for each T. What is an F [x]-submodule of V ?

– A T -stable subspace W (i.e. T (W ) ≤W ) is also called a subspace preserved by T.

• Suppose F is a field, G is a group, and recall the group ring

F [G] =
{

n∑
i=1

aigi|ai ∈ F, gi ∈ G

}
, (2.3)

if there is an action of G on an F -vector space V then V becomes a F [G]-module.

Suppose M is an R-module. Suppose I ⊂ R is an ideal such that i ·m = 0∀i ∈ I, ∀m ∈M. Then we say I annhilates M.
In this case, the obvious choice of R/I on M is well-define: (r +I)m = rm and (r + i+I)m = (r + i)m = rm+0 = rm.

Definition: Supopse R is commutative ring with identity 1R. Suppose A is a ring with identity 1A and suppose there
exists a homomorphism

ϕ : R→ A

such that ϕ(1R) = 1A and ϕ(R) ⊆ Z(A), then A is called an R-algbra.

For example,

• let R = F be a field and A = F [x], and ϕ(r) = r (a constant polynomial).

• This also works for any commutative ring R with 1 and A = R[x] and it also works for commutative rings R ⊂ S with
1R = 1S . For example, S[x] is an R-algebra and C[x] is an Q− algebra and a Z− algebra.

• Also true for group rings! If R is commutative with identity, then R[G] is an R-algebra for any (finite) group G. Note,
the algebra may no longer be commutative.

• Perhaps the most important example, let R = F be a field and A = Mn×n(F ). Let ϕ(r) = r · idn.

• One non-trivial example: Fp[x] is a Z-algebra, where ϕ(n) = n + pZ ∈ Fp.

Definition: If A is an R-module then B ⊆ A is an R-submodule if it is closed under addition and multiplication.

Proposition 2: If R contains 1, then it is sufficient to check (b + rc) ∈ B for all b, c ∈ B, r ∈ R.

Definition: If A, B are R-modules, then ϕ : A→ B is an R-homomorphism if ϕ(a+b) = ϕ(a)+ϕ(b) and ϕ(rm) = rϕ(m)
for all a, b ∈ A and r ∈ R.

In this case, |ϕ〉 is an R-submodule of A and ϕ(A) is an R-submodule of B.

You can always take the quotient between a module and a submodule. That is, if A ⊆ B are R-modules, then B/A is an
R-submodule.

An example from linear algebra is that
T (V ) ∼= V/ ker(T ). (2.4)

Definition: We write HOMR(M, N) for the set of R-module homomorphisms f : M → N (where M, N are R-modules).

Notice: HOMR(M, N) is an R-module. If f, g ∈ HOMR(M, N), r ∈ R, then (f+g)(m) = f(m)+g(m) and (rf)(m) = rf(m).

If f ∈ HOMR(M, N) and g ∈ HOMR(N, P ) then g ◦ f ∈ HOMR(M, P ). Therefore, HOMR(M, M) is a ring. This ring is
called the endomorphism ring of M. It is interchangeably called ENDR(M).

TESTABLE MATERIAL ENDS (END OF 10.2)
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Assume that R has an identity. If M is an R-module and A ⊂M is a (possibly finite) subset, then there is a free module on
A, the set of all finite R-combinations of elements of A,

{
n∑

i=1
riai|ri ∈ R, ai ∈ A}.

This is a set of formal sums, not a subset of A.

Definition: If N1, . . . , Nn ⊆M are R-submodules of M, their sum is

N1 + · · ·+ Nn =
{

n∑
i=1

rini|ri ∈ R, ni ∈ Ni

}
(2.5)

It is easy to show that this is an R-submodule of M , the smallest one that contains all the Nis.

Definition: If A ⊆M, and A is a subset of R-module M , then

RA =
{

n∑
i=1

riai|ri ∈ R, ai ∈ A

}
. (2.6)

RA is an R-submodule of M , the smallest such that contains A. Even if A is infinite, we still only have finite sums.

If N1, . . . , Nn are R-modules, consider the product

N1 ×N2 × · · · ×Nn = {(n1, n2, . . . , nn)|ni ∈ Ni}. (2.7)

If each Ni is a submodule of M then there is a map ϕ : N1×N2×· · ·×Nn →M defined by (n1, n2, . . . , nn) 7→ n1 + · · ·+nn.

If ϕ is an isomorphism, ker ϕ = {0}. Note: missing some stuff here onwards.

Remarks: If R = F is a field, then R-direct sums are just vector space direct products, i.e.

N1 ⊕ · · · ⊕Nn
∼= N1 × · · · ×Nn. (2.8)

This remark is worth making because it is not true for infinite products and sums.

Example 1: In F [X], let A = {1, x}, then

FA = {a + bx|a, b ∈ F}. (2.9)

But note that A generates F [x] as a ring, even though it does not generate it as an F -module.

If M is an R-module and A ⊆M such that M = RA then we say A generates M . If M = RA for some finite set A, then M
is finitely generated.
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