MAT357: Real Analysis Problem Set 2

QiLin Xue

2022-2023

I discussed problems Ahmad, Jonah, Andy, and Nathan for this problem set (different for each question).

1. (a) Let (*an*) be a converging sequence in *M* that converges to *a.* We wish to show that any isometry *f* sends this converging sequence to another converging sequence in N. That is, we wish to show that $(f(a_n))$ converges to $f(a)$ in *N*. First, since (a_n) is converging, we know that for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $n > N$ implies that

$$
d_M(a_n, a) < \epsilon. \tag{0.1}
$$

Now working with the sequence $(f(a_n))$ in *N*, for all $\epsilon > 0$, we can pick the same *N* as before. Then,

$$
d_M(a_n, a) < \epsilon \implies d_N(f(a_n), f(a)) < \epsilon,\tag{0.2}
$$

where the implication is given by the fact that *f* is an isometry.

(b) A homeomorphism is a bijective continuous function with a continuous inverse. By definition, it is continuous, and we have shown that it is continuous. It remains to show that its inverse is also continuous.

Let $g := f^{-1}.$ We wish to show that g is also an isometry, or equivalently for any $p,q\in N$ we have

$$
d_N(p,q) = d_M(g(p),g(q))
$$
\n(0.3)

This is true since if f is an isometry, we can find $p',q' \in M$ such that $f(p') = p$ and $f(q') = q.$ Then by definition, the following chain of implications hold:

$$
d_N(f(p'), f(q')) = d_M(p, q)
$$
\n(0.4)

$$
\implies d_N(f(p'), f(q')) = d_M((f^{-1} \circ f)p, (f^{-1} \circ f)q) \tag{0.5}
$$

$$
\implies d_N(p,q) = d_M(g(p),g(q)).\tag{0.6}
$$

This is true for all p,q so f^{-1} is an isometry. But we've shown that isometries are continuous, so f^{-1} is continuous, and we are finished.

(c) Suppose for the sake of contradiction that $[0, 1]$ is isometric to $[0, 2]$. We will make use of the following lemma:

Lemma 1: Let $f : M \to N$ be a homeomorphism between two compact sets in \mathbb{R}^n . If $m \in \partial M$ then $f(m) ∈ ∂N$.

Proof. Suppose for contradiction that the above is not true. That is, there exists a homeomorphism $f : M \rightarrow$ *N* and $m \in \partial M$ such that $f(m) \in \text{int}(N)$. If this was true, then we can consider an open ball $B_\delta \in \text{int}(N)$ around $f(m)$ for some $\delta > 0$. Then the preimage of this open ball will be an open ball in $int(M)$ that contains *m.* This contradicts our assumption that *m* is on the boundary, and thus not in the interior of *M.* \Box

Let $f : [0,1] \rightarrow [0,2]$ be an isometry. Then by the above lemma, then we either have $f(0) = 0, f(1) = 2$ or $f(0) = 2, f(1) = 0$. In either case,

$$
d_{[0,1]}(0,1) = 1 \tag{0.7}
$$

and

$$
d_{[0,2]}(f(0), f(1)) = d_{[0,2]}(0, 2) = d_{[0,2]}(2, 0) = 2.
$$
\n(0.8)

Since $1 \neq 2$, we have contradicted the assumption that *f* is an isometry.

2. We first make use of the following lemma,

Lemma 2: Every Cauchy sequence (*an*) is bounded.

Proof. We wish to show that there is some M such that $|a_n| < M$. Because (a_n) is Cauchy, we have that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $n_1, n_2 \ge N$ implies that

$$
d(a_{n_1}, a_{n_2}) < \epsilon. \tag{0.9}
$$

Suppose that the sequence is unbounded. Then we can choose $\epsilon = 1$. For some $N \in \mathbb{N}$ we have for all $n_1, n_2 > N$,

$$
d(a_{n_1}, a_{n_2}) < 1 \tag{0.10}
$$

But by the reverse triangle inequality, we have that

$$
d(a_{n_1}, a_{n_2}) \ge d(|a_{n_1}|, |a_{n_2}|). \tag{0.11}
$$

Because (a_n) is unbounded, there exists $n_1 > N$ such that $|a_{n_1}| > 2 + |a_{n_2}|.$ This implies that

$$
d(a_{n_1}, a_{n_2}) \ge 2. \tag{0.12}
$$

But this contradicts the statement that $|a_{n_1}-a_{n_2}|< 1,$ so we have a contradiction and (a_n) has to be bounded.

Consider a Cauchy sequence (*an*) contain in *M.* The above lemma implies that there exists a closed set *S* such that $a_n \in S$ for all $n \in \mathbb{N}$. This set is bounded, and by the assumption given in the problem, *S* is compact.

By definition, because *S* is compact, every sequence (*bn*) has a convergent subsequence (*bn^k*). If (*bn*) converges in *S*, then $\left(b_{n_k}\right)$ must converge to the same limit point in $S.$

Every Cauchy sequence has a limit point. What remains to be shown is that the limit point of (*an*) is contained in *S.* But because *S* is compact, we know that there is a subsequence that converges to a point in *S.* Since (*an*) converges to its limit point, this limit point must be the same as the limit point of its converging subsequence, which is contained in *S.*

3. (a) Suppose the graph is not closed. Then there exists a sequence $y_n := (a_n, f(a_n))$ such that its limit point, which we denote as $y := (a, b)$, is not contained in the graph. This means that $b \neq f(a_n)$ (because if they were equal, then $y = (a, f(a))$ would be contained in the graph).

Because $(a_n, f(a_n))$ has a limit point, then so does the component sequence (a_n) and $(f(a_n))$ which converges to *a* and *b* respectively.

Consider the sequence $(a_n) \subset M$, which converges to $a \in M$. Then because f is continuous, we must have that $(f(a_n))$ converges to $f(a) \in \mathbb{R}$, so the limit point of $(a_n, f(a_n))$ is $(a, f(a))$ *.* But we already said that the limit point was actually (a, b) with $b \neq f(a)$, leading to a contradiction.

(b) If f is continuous and M is compact, then $f(M)$ is compact. This is true since we can take any sequence (a_n) in M and find a convergent subsequence (a_{n_k}) that converges to $a.$ Then by continuity, we have that for the sequence $f(a_n) \in \mathbb{R},$ there exists a subsequence $f(\overset{\circ}{a}_{n_k})$ that converges in \mathbb{R} to $f(a),$ so $f(M)$ is compact.

Consider any sequence $y_n := (a_n, f(a_n))$ on the graph. We know that (a_n) has a converging subsequence and we just proved that because $f(M)$ is compact, $(f(a_n))$ has a converging subsequence. Assume these subsequences are given by $(a_{n_k}), (f(a_{n_k})),$ Therefore, $(a_n, f(a_n))$ has the converging subsequence $(a_{n_k}, f(a_{n_k}))$ which converges to the point $(a, b) \in M \times \mathbb{R}$.

(c) Consider a converging sequence (a_n) that converges to $a \in M$. We wish to show that $(f(a_n))$ converges in R. First, consider the sequence $((a_n,f(a_n)))$. Because the graph is compact, this has a converging subsequence $(a_{n_k},f(a_{n_k}))$ that converges to a point (a,b) on the graph. Note that (a_{n_k}) converges to a since a convergent subsequence of a convergent sequence has the same limit point. But every point on the graph can be written as $(x, f(x))$, we must have $b = f(a)$. So we have that $(f(a_{k_n}))$ converges to $f(a)$.

We have shown that any converging subsequence $(f(a_{n_k}))$ converges to $(f(a)).$ We then consider the following lemma.

Lemma 3: Let $(x_n) \subset M$ be a sequence, where $M \subset \mathbb{R}$ is a compact set. If all converging subsequences have the same limit point *x,* then (*xn*) converges to *x.*

Proof. Suppose for the sake of contradiction that (x_n) does not converge to x. Then there exists some $\epsilon > 0$ such that for any choice of $N \in \mathbb{N}$, there exists some $n > N$ such that

$$
d(x_n, x) \ge \epsilon. \tag{0.13}
$$

Let *X* be the sequence of all x_n such that $d(x_n, x) \geq \epsilon$ with $n > N$. This is an infinite set because if it was finite, then we could pick a higher *N* value such that there are no $n > N$ such that $|x_n - x| \geq \epsilon$. Now, we can treat $X=(a_n)$ as a sequence. Because M is compact, there is a converging subsequence (a_{n_k}) that converges to x. This means that for all $\epsilon > 0$ (including the one we chose above), there exists some $N \in \mathbb{N}$ such that for every $n > N$ we have

$$
d(a_{n_k}, x) < \epsilon. \tag{0.14}
$$

But we defined a_{n_k} to be in the set of the of x_n such that $d(x_n, x) \ge \epsilon$, leading to a contradiction. \Box

The properties of the above lemma hold, so (*f*(*an*)) converges. Therefore, *f* is continuous since it maps convergent sequences in *M* to convergent sequences in R*.*

(d) Consider the function

$$
f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0. \end{cases}
$$
 (0.15)

Then this function is clearly not continuous, since we can consider the sequence $(a_n) = -\frac{1}{1}$ $\frac{1}{1}, -\frac{1}{2}$ $\frac{1}{2}, -\frac{1}{3}$ $\frac{1}{3}, \ldots$. This clearly converges to 0 but $(f(a_n))$ does not converge since $(f(a_n)) = (f(1/n)) = (n)$, which is unbounded. However, this graph is closed since it contains all its limit points. Consider a converging sequence $p_n := (a_n, f(a_n))$. There are three cases:

• The sequence p_n contains an infinite number of points $(0,0)$. If this occurs, then it converges to $(0,0)$ which is contained in the graph.

- The sequence p_n contains an infinite number of points $(a_n, f(a_n))$ where $a_n > 0$. If this occurs, there exists $N \in \mathbb{N}$ such that $n > N$ implies that $a_n > 0$ so we are restricted to the graph $\{(p, y) \in (0, \infty) \times \mathbb{R} : y = 1/p\}$. This is continuous, so the graph is closed (by part (a)), so the limit point of *pⁿ* is contained in the graph.
- The same argument as the previous case, but with an infinite number of points where $a_n < 0$.

4. We are given that K_1 ⊃ K_2 ⊃ \cdots and diam (K_i) ≥ μ . Let us define

$$
\mu' = \sup\{\mu : \text{diam}(K_i) \ge \mu\}. \tag{0.16}
$$

Lemma 4: The sequence $(Diam(K_n))$ converges to μ' .

Proof. Because $K_n \supset K_{n+1}$, then (Diam (K_n)) is a non-increasing function that is bounded below by 0. Therefore, a limit definitely exists, and specifically the limit point is the infimum of the sequence, which is by definition $\mu'.$

Next, we can show that $\mu' \in \{\mu : \text{diam}(K_i) \geq \mu\}$. This is true because $(\text{diam}(K_i))$ is a non-increasing converging sequence, so this is a closed set, and the supremum is contained in the set.

Note that

$$
\text{diam}(K) = \text{diam}\left(\bigcap K_i\right) = \text{inf}\{\text{diam}(K_i)\} = \mu'.\tag{0.17}
$$

The last equality is true since the infimum is the largest such μ such that diam $(K_i)\,\geq\,\mu,$ which we defined as $\mu'.$ Therefore, since $\mu' \ge \mu$ we have diam $(K_i) \ge \mu$.

- 5. (a) We will prove this for a general complete metric space N, and since $\mathbb R$ is a complete metric space, then we are done. We will do this in a few steps:
	- (1) Consider a sequence (a_n) ⊂ *S* that converges to $Lx \in \partial S$. Given this, we will show that $(f(a_n))$ converges to some *Y.*
	- (2) Consider a different sequence $(b_n) \subset S$ that converges to the same limit point as above, x. We will show that $(f(b_n))$ converges to the same point as above, *Y*.
	- (3) We extend f to \bar{f} by defining $\bar{f}(x) = f(x)$ for all $x \in S$ and $\bar{f}(x) = \lim_{n \to \infty} a_n$ for any (a_n) that converges to $x \in \bar{S} \setminus S$. This is a well-defined function by the above, and it remains to show that this is uniformly continuous.

We will do the above:

(1) The sequence (*an*) converges, so it is also a Cauchy sequence. Because *f* is uniformly continuous, for every $\epsilon > 0$ there exists a $\delta > 0$ such that given $a_i, a_j \in S$, we have $d(a_i, a_j) < \delta \implies d(f(a_i), f(a_j)) < \epsilon$. Because (a_n) α converges, for all $\epsilon >0,$ there exists some $N\in\mathbb{N}$ such that $i,j>N$ implies that $d(a_i,a_j)<\epsilon.$ If we set $\epsilon=\delta,$ then we've shown that

$$
i, j > N \implies d(a_i, a_j) < \delta \implies d(f(a_i), f(a_j)) < \delta,
$$

so (*f*(*an*)) is Cauchy. But because *N* is complete, this Cauchy sequence must converge. Let us denote this limit point to be *Y.*

(2) We wish to show that given any sequence (b_n) that also converges to x, the sequence $(f(b_n))$ also converges to *Y*. To do this, we need to show that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $n > N \implies d(Y, f(b_n)) < \epsilon$. To show this, we make use of the triangle inequality:

$$
d(Y, f(b_n)) \le d(Y, f(a_n)) + d(f(a_n), f(b_n)).
$$
\n(0.18)

Both terms can have an arbitrary upper bound. Because $(f(a_n))$ converges to Y there exists $N_a \in \mathbb{N}$ such that $d(Y, f(a_n)) < \frac{\epsilon}{2}$ $\frac{1}{3}$. Note that for every $\delta > 0$ there exists an $N \in \mathbb{N}$ such that $n > N$ implies that $d(a_n, b_n) < delta$. This is true since by the triangle inequality,

$$
d(a_n, b_n) \le d(a_n, x) + d(x, b_n) < \frac{\delta}{2} + \frac{\delta}{2} = \delta. \tag{0.19}
$$

which is true since both (a_n) and (b_n) converge, so they can get arbitrarily close to x.

By uniform continuity there exists $\delta > 0$ such that $d(a_n, b_n) < \delta \implies d(f(a_n), f(b_n)) < \frac{\epsilon}{2}$ $\frac{1}{3}$. We showed that for any choice of δ we can pick n such that $d(a_n, b_n) < \delta$, so we are able to bound the second term in the original triangle inequality by $\frac{\epsilon}{3}$ as well. We have, for all $\epsilon > 0$, a choice of $N \in \mathbb{N}$ such that $n > N$ implies that

$$
d(Y, f(b_n)) \le d(Y, f(a_n)) + d(f(a_n), f(b_n)) < \frac{2\epsilon}{3} < \epsilon \tag{0.20}
$$

so $(f(b_n))$ converges to the same *Y*.

(3) Finally, we extend f to \bar{f} by defining $\bar{f}(x) = f(x)$ for all $x \in S$ and $\bar{f}(x) = \lim_{n \to \infty} a_n$ for any sequence (a_n) that converges to $x\in \bar{S}\setminus S.$ We wish to show that for any $x,y\in \bar{S}$ and every $\epsilon>0$ there exists a $\delta>0$ such that $d(x,y) < \delta \implies d(\bar{f}(x),\bar{f}(y)) < \delta.$ There are three cases to consider here:

- If $x, y \in S$, then $\bar{f} = f$ and since f is uniformly continuous we are done.
- Let $x \in S$ and $y \in \overline{S} \setminus S$. Consider a sequence (a_n) that converges to *y*.

Because the sequence converges, for any $N \in \mathbb{N}$ there exists some $\delta > 0$ such that $d(a_n, y) < \delta \implies n > N$. Then for every $\epsilon > 0$, we can choose $N \in \mathbb{N}$ such that $n > N$ implies that $d(f(a_n), \bar{f}(y)) < \epsilon$. Therefore, we have shown that $d(a_n,y) < \delta \implies d(f(a_n),\bar{f}(y)) < \epsilon.$ Since x can be part of a sequence that converges to $y,$ then we're done.

• Let $x, y \in \overline{S} \setminus S$. Then, we use the triangle inequality. Consider,

$$
d(x, y) \le d(x, z) + d(z, y) \tag{0.21}
$$

where $z \in S$. We have shown in the previous case that for all $\epsilon_x, \epsilon_y > 0$, there exists $\delta_x, \delta_y > 0$ such that $d(x, z) < \delta_x \implies d(\bar{f}(x), f(z)) < \epsilon_x$ and $d(z, y) < \delta_y \implies d(f(z), \bar{f}(y)) < \epsilon_y$. If we choose $\epsilon_x, \epsilon_y = \frac{\epsilon}{2}$ $\frac{1}{3}$ and $\delta'=\min\{\delta_x,\delta_y\},$ then it follows that $d(x,z),d(z,y)<\delta'$ implies that $d(\bar{f}(x),f(z))+d(f(z),\bar{f}(y))<\frac{2\tilde{e}(x)}{2\tilde{e}(x)}$ $\frac{\pi}{3} < \epsilon$.

To finish our proof that \bar{f} is continuous, consider any $\epsilon > 0$ and some arbitrary $z \in S$. Then there exists a *δ* = 2*δ*' where *δ*' is the value from the previous paragraph which corresponds to ϵ_x , $\epsilon_y = \frac{\epsilon}{2}$ $\frac{5}{3}$ such that

$$
d(x, y) < \delta. \tag{0.22}
$$

By how δ is defined, we must also have:

$$
d(x, z) + d(z, y) < \delta. \tag{0.23}
$$

But we have shown that this implies

$$
d(\bar{f}(x), f(z)) + d(f(z), \bar{f}(y)) < \epsilon.
$$

Therefore, $d(x, y) < \beta$ implies that,

$$
d(\bar{f}x, \bar{f}y) < d(\bar{f}(x), f(z)) + d(f(z), \bar{f}(y)) < \epsilon
$$

and we are done.

Because $\mathbb R$ is a complete metric space, then the above holds.

(b) We wish to show that this extension is unique. Consider a function $g \neq \bar{f}$ that also extends f that is uniformly continuous. This means that there exists a point $p\in \bar{S}\setminus S$ such that $g(p)\neq \bar{f}(p).$ Then we claim that the above is impossible, i.e. there is a contradiction.

Consider a sequence $(a_n) \subset S$ that converges to p. Then for every $\delta > 0$ there exists $N \in \mathbb{N}$ such that $n > N$ implies that,

$$
d(a_n, p) < \delta
$$

and because g is uniformly continuous, it means that for very $\epsilon>0$ and $x,y\in\bar S,$ there exists $\delta'>0$ such that

$$
d(x, y) < \delta' \implies d(g(x), g(y)) < \epsilon
$$

Let $x = a_n$ and $y = p$. Then

$$
n > N \implies d(a_n, p) < \delta
$$

\n
$$
\implies d(a_n, p) < \delta'
$$

\n
$$
\implies d(f(a_n), g(p)) < \epsilon
$$

On the second line, we were able to set $\delta=\delta'$ since we can find a $N\in\mathbb{N}$ for any δ value. For the third line, we used the fact that *f* agrees with *g* in *S*. We have shown that for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$
d(f(a_n), g(p)) < \epsilon,
$$

or equivalently, $(f(a_n))$ converges to $g(p)$. But we have shown in the previous part that $(f(a_n))$ converges to $\bar{f}(p)$, so we have

$$
g(p) = \bar{f}(p),
$$

which violates our assumption that they do not agree at this point.

(c) See above.

6. (a) Suppose that *M* is not compact. Then there exists a sequence (*an*) with no convergent subsequence, so the sequence as a set is closed. If it was not closed then there would be a subsequence that that converges to a point not in this set, so *M* would not be compact. Therefore, the distance between any two distinct points will be nonzero. We then define:

$$
\delta_i = \frac{1}{3} \inf \{ d(a_i, a_j) : a_i \neq a_j \}.
$$
\n(0.24)

Then consider the closed ball around point a_i with radius δ_i , given by:

$$
B_i(x) = \begin{cases} 1 & \text{if } d(x, a_i) \le \delta_i \\ 0 & \text{otherwise} \end{cases}
$$
 (0.25)

as well as the function,

$$
f(x) = \sum_{i=1}^{\infty} (-1)^{i} i B_{i}(x) (1 - d(x, a_{i})).
$$
\n(0.26)

We wish to show that this is continuous. We look at different cases:

- The function is continuous outside the closed balls, because then we have $f = 0$, which is continuous.
- Inside the closed balls, only one of the terms in the sum is nonzero. So we need to show that

$$
(-1)^{i}iB_{i}(x)(1-d(x,a_{i}))
$$

is continuous. Here, $B_i(x) = 1$ and *i* is a constant. The distance function is continuous, so a linear combination of this distance function must also be continuous.

• Finally, we need to show the function is continuous at the boundary of the support of this function. A sequence (b_n) that approaches X in this boundary from outside the balls will have the corresponding sequence $(f(a_n))$ = $0,0,\ldots$, which converges to 0. A sequence (c_n) that approaches the same X in this boundary from inside the balls will have the corresponding sequence $(f(c_n))$ which converges to $f(X) = 0$. These agree, so f must be continuous.

However, this function is not bounded above because for any $M > 0 \in \mathbb{R}$ we know that

$$
f(a_{2\lceil M\rceil+4}) = 2\lceil M\rceil + 4 > M.
$$

Similarly, it doesn't have a lower bound since for any $M < 0 \in \mathbb{R}$ we know that

$$
f(a_{2|M|-3}) = 2\lfloor M \rfloor - 3 < M.
$$

So we proved the contrapositive.

(b) This is a similar question. We again prove the contrapositive. Consider *M* is not compact. We can perform the same construction to arrive at the function

$$
f(x) = \sum_{i=1}^{\infty} (-1)^{i} i B_{i}(x) (1 - d(x, a_{i})).
$$

Now consider the function.

 $g(x) = \tanh(f(x))$

This is continuous because tanh is continuous and *f* is continuous, and the composition of continuous functions is continuous. It is also bounded since the codomain of tanh is (−1*,* 1)*.* However, it doesn't reach a maximum or a minimum since $f(x)$ is unbounded on both sides.