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I discussed problems Ahmad, Jonah, Andy, and Nathan for this problem set (different for each question).

1. (a) Let (an) be a converging sequence in M that converges to a. We wish to show that any isometry f sends this
converging sequence to another converging sequence in N. That is, we wish to show that (f(an)) converges to f(a)
in N. First, since (an) is converging, we know that for all ε > 0 there exists N ∈ N such that n > N implies that

dM (an, a) < ε. (0.1)

Now working with the sequence (f(an)) in N, for all ε > 0, we can pick the same N as before. Then,

dM (an, a) < ε =⇒ dN (f(an), f(a)) < ε, (0.2)

where the implication is given by the fact that f is an isometry.

(b) A homeomorphism is a bijective continuous function with a continuous inverse. By definition, it is continuous, and
we have shown that it is continuous. It remains to show that its inverse is also continuous.

Let g := f−1. We wish to show that g is also an isometry, or equivalently for any p, q ∈ N we have

dN (p, q) = dM (g(p), g(q)) (0.3)

This is true since if f is an isometry, we can find p′, q′ ∈M such that f(p′) = p and f(q′) = q. Then by definition,
the following chain of implications hold:

dN (f(p′), f(q′)) = dM (p, q) (0.4)
=⇒ dN (f(p′), f(q′)) = dM ((f−1 ◦ f)p, (f−1 ◦ f)q) (0.5)
=⇒ dN (p, q) = dM (g(p), g(q)). (0.6)

This is true for all p, q so f−1 is an isometry. But we’ve shown that isometries are continuous, so f−1 is continuous,
and we are finished.

(c) Suppose for the sake of contradiction that [0, 1] is isometric to [0, 2]. We will make use of the following lemma:

Lemma 1: Let f : M → N be a homeomorphism between two compact sets in Rn. If m ∈ ∂M then
f(m) ∈ ∂N.

Proof. Suppose for contradiction that the above is not true. That is, there exists a homeomorphism f : M →
N and m ∈ ∂M such that f(m) ∈ int(N). If this was true, then we can consider an open ball Bδ ∈ int(N)
around f(m) for some δ > 0. Then the preimage of this open ball will be an open ball in int(M) that contains
m. This contradicts our assumption that m is on the boundary, and thus not in the interior of M.

Let f : [0, 1] → [0, 2] be an isometry. Then by the above lemma, then we either have f(0) = 0, f(1) = 2 or
f(0) = 2, f(1) = 0. In either case,

d[0,1](0, 1) = 1 (0.7)

and
d[0,2](f(0), f(1)) = d[0,2](0, 2) = d[0,2](2, 0) = 2. (0.8)

Since 1 6= 2, we have contradicted the assumption that f is an isometry.
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2. We first make use of the following lemma,

Lemma 2: Every Cauchy sequence (an) is bounded.

Proof. We wish to show that there is some M such that |an| < M. Because (an) is Cauchy, we have that for all
ε > 0, there exists N ∈ N such that n1, n2 ≥ N implies that

d(an1 , an2) < ε. (0.9)

Suppose that the sequence is unbounded. Then we can choose ε = 1. For some N ∈ N we have for all n1, n2 > N,

d(an1 , an2) < 1 (0.10)

But by the reverse triangle inequality, we have that

d(an1 , an2) ≥ d(|an1 |, |an2 |). (0.11)

Because (an) is unbounded, there exists n1 > N such that |an1 | > 2 + |an2 |. This implies that

d(an1 , an2) ≥ 2. (0.12)

But this contradicts the statement that |an1−an2 | < 1, so we have a contradiction and (an) has to be bounded.

Consider a Cauchy sequence (an) contain in M. The above lemma implies that there exists a closed set S such that
an ∈ S for all n ∈ N. This set is bounded, and by the assumption given in the problem, S is compact.

By definition, because S is compact, every sequence (bn) has a convergent subsequence (bnk
). If (bn) converges in S,

then (bnk
) must converge to the same limit point in S.

Every Cauchy sequence has a limit point. What remains to be shown is that the limit point of (an) is contained in S. But
because S is compact, we know that there is a subsequence that converges to a point in S. Since (an) converges to its
limit point, this limit point must be the same as the limit point of its converging subsequence, which is contained in S.
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3. (a) Suppose the graph is not closed. Then there exists a sequence yn := (an, f(an)) such that its limit point, which we
denote as y := (a, b), is not contained in the graph. This means that b 6= f(an) (because if they were equal, then
y = (a, f(a)) would be contained in the graph).

Because (an, f(an)) has a limit point, then so does the component sequence (an) and (f(an)) which converges to
a and b respectively.

Consider the sequence (an) ⊂ M, which converges to a ∈ M. Then because f is continuous, we must have that
(f(an)) converges to f(a) ∈ R, so the limit point of (an, f(an)) is (a, f(a)). But we already said that the limit
point was actually (a, b) with b 6= f(a), leading to a contradiction.

(b) If f is continuous and M is compact, then f(M) is compact. This is true since we can take any sequence (an) in
M and find a convergent subsequence (ank

) that converges to a. Then by continuity, we have that for the sequence
f(an) ∈ R, there exists a subsequence f(ank

) that converges in R to f(a), so f(M) is compact.

Consider any sequence yn := (an, f(an)) on the graph. We know that (an) has a converging subsequence and we
just proved that because f(M) is compact, (f(an)) has a converging subsequence. Assume these subsequences are
given by (ank

), (f(ank
)), Therefore, (an, f(an)) has the converging subsequence (ank

, f(ank
)) which converges to

the point (a, b) ∈M × R.

(c) Consider a converging sequence (an) that converges to a ∈M. We wish to show that (f(an)) converges in R. First,
consider the sequence ((an, f(an))). Because the graph is compact, this has a converging subsequence (ank

, f(ank
))

that converges to a point (a, b) on the graph. Note that (ank
) converges to a since a convergent subsequence of a

convergent sequence has the same limit point. But every point on the graph can be written as (x, f(x)), we must
have b = f(a). So we have that (f(akn

)) converges to f(a).

We have shown that any converging subsequence (f(ank
)) converges to (f(a)). We then consider the following

lemma.

Lemma 3: Let (xn) ⊂ M be a sequence, where M ⊂ R is a compact set. If all converging subsequences
have the same limit point x, then (xn) converges to x.

Proof. Suppose for the sake of contradiction that (xn) does not converge to x. Then there exists some ε > 0
such that for any choice of N ∈ N, there exists some n > N such that

d(xn, x) ≥ ε. (0.13)

Let X be the sequence of all xn such that d(xn, x) ≥ ε with n > N. This is an infinite set because if it was
finite, then we could pick a higher N value such that there are no n > N such that |xn − x| ≥ ε.
Now, we can treat X = (an) as a sequence. Because M is compact, there is a converging subsequence (ank

)
that converges to x. This means that for all ε > 0 (including the one we chose above), there exists some
N ∈ N such that for every n > N we have

d(ank
, x) < ε. (0.14)

But we defined ank
to be in the set of the of xn such that d(xn, x) ≥ ε, leading to a contradiction.

The properties of the above lemma hold, so (f(an)) converges. Therefore, f is continuous since it maps convergent
sequences in M to convergent sequences in R.

(d) Consider the function

f(x) =


1
x

x 6= 0
0 x = 0.

(0.15)

Then this function is clearly not continuous, since we can consider the sequence (an) = −1
1 ,−

1
2 ,−

1
3 , . . . . This

clearly converges to 0 but (f(an)) does not converge since (f(an)) = (f(1/n)) = (n), which is unbounded. However,
this graph is closed since it contains all its limit points. Consider a converging sequence pn := (an, f(an)). There
are three cases:

• The sequence pn contains an infinite number of points (0, 0). If this occurs, then it converges to (0, 0) which
is contained in the graph.
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• The sequence pn contains an infinite number of points (an, f(an)) where an > 0. If this occurs, there exists
N ∈ N such that n > N implies that an > 0 so we are restricted to the graph {(p, y) ∈ (0,∞)×R : y = 1/p}.
This is continuous, so the graph is closed (by part (a)), so the limit point of pn is contained in the graph.

• The same argument as the previous case, but with an infinite number of points where an < 0.
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4. We are given that K1 ⊃ K2 ⊃ · · · and diam(Ki) ≥ µ. Let us define

µ′ = sup{µ : diam(Ki) ≥ µ}. (0.16)

Lemma 4: The sequence (Diam(Kn)) converges to µ′.

Proof. Because Kn ⊃ Kn+1, then (Diam(Kn)) is a non-increasing function that is bounded below by 0. Therefore,
a limit definitely exists, and specifically the limit point is the infimum of the sequence, which is by definition µ′.

Next, we can show that µ′ ∈ {µ : diam(Ki) ≥ µ}. This is true because (diam(Ki)) is a non-increasing converging
sequence, so this is a closed set, and the supremum is contained in the set.

Note that
diam(K) = diam

(⋂
Ki

)
= inf{diam(Ki)} = µ′. (0.17)

The last equality is true since the infimum is the largest such µ such that diam(Ki) ≥ µ, which we defined as µ′.
Therefore, since µ′ ≥ µ we have diam(Ki) ≥ µ.
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5. (a) We will prove this for a general complete metric space N , and since R is a complete metric space, then we are done.
We will do this in a few steps:

(1) Consider a sequence (an) ⊂ S that converges to Lx ∈ ∂S. Given this, we will show that (f(an)) converges to
some Y.

(2) Consider a different sequence (bn) ⊂ S that converges to the same limit point as above, x. We will show that
(f(bn)) converges to the same point as above, Y.

(3) We extend f to f̄ by defining f̄(x) = f(x) for all x ∈ S and f̄(x) = lim
n→∞

an for any (an) that converges to
x ∈ S̄ \S. This is a well-defined function by the above, and it remains to show that this is uniformly continuous.

We will do the above:

(1) The sequence (an) converges, so it is also a Cauchy sequence. Because f is uniformly continuous, for every
ε > 0 there exists a δ > 0 such that given ai, aj ∈ S, we have d(ai, aj) < δ =⇒ d(f(ai), f(aj)) < ε. Because (an)
converges, for all ε > 0, there exists some N ∈ N such that i, j > N implies that d(ai, aj) < ε. If we set ε = δ,
then we’ve shown that

i, j > N =⇒ d(ai, aj) < δ =⇒ d(f(ai), f(aj)) < δ,

so (f(an)) is Cauchy. But because N is complete, this Cauchy sequence must converge. Let us denote this limit
point to be Y.

(2) We wish to show that given any sequence (bn) that also converges to x, the sequence (f(bn)) also converges
to Y. To do this, we need to show that for all ε > 0, there exists N ∈ N such that n > N =⇒ d(Y, f(bn)) < ε.
To show this, we make use of the triangle inequality:

d(Y, f(bn)) ≤ d(Y, f(an)) + d(f(an), f(bn)). (0.18)

Both terms can have an arbitrary upper bound. Because (f(an)) converges to Y there exists Na ∈ N such that
d(Y, f(an)) < ε

3 . Note that for every δ > 0 there exists an N ∈ N such that n > N implies that d(an, bn) < delta.

This is true since by the triangle inequality,

d(an, bn) ≤ d(an, x) + d(x, bn) < δ

2 + δ

2 = δ. (0.19)

which is true since both (an) and (bn) converge, so they can get arbitrarily close to x.

By uniform continuity there exists δ > 0 such that d(an, bn) < δ =⇒ d(f(an), f(bn)) < ε

3 . We showed that for
any choice of δ we can pick n such that d(an, bn) < δ, so we are able to bound the second term in the original
triangle inequality by ε

3 as well. We have, for all ε > 0, a choice of N ∈ N such that n > N implies that

d(Y, f(bn)) ≤ d(Y, f(an)) + d(f(an), f(bn)) < 2ε
3 < ε (0.20)

so (f(bn)) converges to the same Y.

(3) Finally, we extend f to f̄ by defining f̄(x) = f(x) for all x ∈ S and f̄(x) = lim
n→∞

an for any sequence (an)
that converges to x ∈ S̄ \ S. We wish to show that for any x, y ∈ S̄ and every ε > 0 there exists a δ > 0 such that
d(x, y) < δ =⇒ d(f̄(x), f̄(y)) < δ. There are three cases to consider here:

• If x, y ∈ S, then f̄ = f and since f is uniformly continuous we are done.

• Let x ∈ S and y ∈ S̄ \ S. Consider a sequence (an) that converges to y.

Because the sequence converges, for any N ∈ N there exists some δ > 0 such that d(an, y) < δ =⇒ n > N.
Then for every ε > 0, we can choose N ∈ N such that n > N implies that d(f(an), f̄(y)) < ε. Therefore, we
have shown that d(an, y) < δ =⇒ d(f(an), f̄(y)) < ε. Since x can be part of a sequence that converges to y,
then we’re done.

• Let x, y ∈ S̄ \ S. Then, we use the triangle inequality. Consider,

d(x, y) ≤ d(x, z) + d(z, y) (0.21)
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where z ∈ S. We have shown in the previous case that for all εx, εy > 0, there exists δx, δy > 0 such that
d(x, z) < δx =⇒ d(f̄(x), f(z)) < εx and d(z, y) < δy =⇒ d(f(z), f̄(y)) < εy. If we choose εx, εy = ε

3 and

δ′ = min{δx, δy}, then it follows that d(x, z), d(z, y) < δ′ implies that d(f̄(x), f(z)) + d(f(z), f̄(y)) < 2ε
3 < ε.

To finish our proof that f̄ is continuous, consider any ε > 0 and some arbitrary z ∈ S. Then there exists a
δ = 2δ′ where δ′ is the value from the previous paragraph which corresponds to εx, εy = ε

3 such that

d(x, y) < δ. (0.22)

By how δ is defined, we must also have:

d(x, z) + d(z, y) < δ. (0.23)

But we have shown that this implies

d(f̄(x), f(z)) + d(f(z), f̄(y)) < ε.

Therefore, d(x, y) < β implies that,

d(f̄x, f̄y) < d(f̄(x), f(z)) + d(f(z), f̄(y)) < ε

and we are done.

Because R is a complete metric space, then the above holds.

(b) We wish to show that this extension is unique. Consider a function g 6= f̄ that also extends f that is uniformly
continuous. This means that there exists a point p ∈ S̄ \ S such that g(p) 6= f̄(p). Then we claim that the above
is impossible, i.e. there is a contradiction.

Consider a sequence (an) ⊂ S that converges to p. Then for every δ > 0 there exists N ∈ N such that n > N
implies that,

d(an, p) < δ

and because g is uniformly continuous, it means that for very ε > 0 and x, y ∈ S̄, there exists δ′ > 0 such that

d(x, y) < δ′ =⇒ d(g(x), g(y)) < ε

Let x = an and y = p. Then

n > N =⇒ d(an, p) < δ

=⇒ d(an, p) < δ′

=⇒ d(f(an), g(p)) < ε.

On the second line, we were able to set δ = δ′ since we can find a N ∈ N for any δ value. For the third line, we
used the fact that f agrees with g in S. We have shown that for every ε > 0 there exists N ∈ N such that

d(f(an), g(p)) < ε,

or equivalently, (f(an)) converges to g(p). But we have shown in the previous part that (f(an)) converges to f̄(p),
so we have

g(p) = f̄(p),

which violates our assumption that they do not agree at this point.

(c) See above.
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6. (a) Suppose thatM is not compact. Then there exists a sequence (an) with no convergent subsequence, so the sequence
as a set is closed. If it was not closed then there would be a subsequence that that converges to a point not in this
set, so M would not be compact. Therefore, the distance between any two distinct points will be nonzero. We then
define:

δi = 1
3 inf {d(ai, aj) : ai 6= aj} . (0.24)

Then consider the closed ball around point ai with radius δi, given by:

Bi(x) =
{

1 if d(x, ai) ≤ δi
0 otherwise

(0.25)

as well as the function,

f(x) =
∞∑
i=1

(−1)iiBi(x)(1− d(x, ai)). (0.26)

We wish to show that this is continuous. We look at different cases:

• The function is continuous outside the closed balls, because then we have f = 0, which is continuous.

• Inside the closed balls, only one of the terms in the sum is nonzero. So we need to show that

(−1)iiBi(x)(1− d(x, ai))

is continuous. Here, Bi(x) = 1 and i is a constant. The distance function is continuous, so a linear combination
of this distance function must also be continuous.

• Finally, we need to show the function is continuous at the boundary of the support of this function. A sequence
(bn) that approaches X in this boundary from outside the balls will have the corresponding sequence (f(an)) =
0, 0, . . . , which converges to 0. A sequence (cn) that approaches the same X in this boundary from inside the
balls will have the corresponding sequence (f(cn)) which converges to f(X) = 0. These agree, so f must be
continuous.

However, this function is not bounded above because for any M > 0 ∈ R we know that

f(a2dMe+4) = 2dMe+ 4 > M.

Similarly, it doesn’t have a lower bound since for any M < 0 ∈ R we know that

f(a2bMc−3) = 2bMc − 3 < M.

So we proved the contrapositive.

(b) This is a similar question. We again prove the contrapositive. Consider M is not compact. We can perform the
same construction to arrive at the function

f(x) =
∞∑
i=1

(−1)iiBi(x)(1− d(x, ai)).

Now consider the function.
g(x) = tanh(f(x))

This is continuous because tanh is continuous and f is continuous, and the composition of continuous functions is
continuous. It is also bounded since the codomain of tanh is (−1, 1). However, it doesn’t reach a maximum or a
minimum since f(x) is unbounded on both sides.
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