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1. Let C be the topologist’s sine circle. It is path connected because given any two points in this set, there are two paths
that connect it: one passes through the very weird part and one passes through the circular arc. Let’s make this rigorous.
We start with the following lemma:

Lemma 1: Let M be a metric space. If p, q ∈ M are path connected and q, r ∈ M are path connected, then
q, r ∈M are path connected.

Proof. There exists continuous functions f1 : [a, b]→M and f2 : [b, c]→M such that

f1(a) = p (0.1)
f1(b) = q (0.2)
f2(b) = q (0.3)
f2(c) = r. (0.4)

Let us now define f3 : [a, c]→M by

f3 =
{
f1 if t ∈ [a, b]
f2 if t ∈ (b, c]

(0.5)

Clearly, f3(a) = p and f3(c) = r. This is continuous because f1 and f2 are each continuous, and they agree at
t = b.

Recall that in the topologist’s sine curve, there is a vertical line at x = 0. Let us denote this subset as V. Now consider
p, q ∈ C. We deal with three cases:

Case (i) If p, q ∈ V , then there is a path that follows this vertical line that joins p and q. Specifically, if p = (0, p′) and
q = (0, q′) then we have the function f1 : [0, 1]→ C given by

t 7→ (0, tq′ + (1− t)p′).

Case (ii) If p, q, then we consider D \ V. We now have a subset that is homeomorphic to (a, b) and since path connectedness
is a topological property, p and q must be path connected. We work on some subcases:

(a) If p and q are both part of the arc, then we can write their location as p = (r cos θp, r sin θp) and q =
(r cos θq, r sin θq) where r > 0 and θp, θq ∈ [0, 2π). We can then define the function f2 : [0, 1]→ C by

t 7→ (r cos(tθq + (1− t)θp), r sin(tθq + (1− t)θp)) (0.6)

(b) If p, q are both part of the original topologist’s sine curve but not in V, then we can write their location as
p = (xp, sin(1/xp)) and q = (xq, sin(1/xq)) where xp, xq > 0. We can then define the function f3 : [0, 1]→ C
by

t 7→
(
txq + (1− t)xp, sin

(
1

txq + (1− t)xp

))
(0.7)

(c) If p is part of the original topologist’s sine curve and q is part of the arc, then we can define x0 to be on the
intersection of the topologist’s curve and the arc. We’ve shown that p is path connected to x0 and q is path
connected to x0 so by the lemma, p, q are path connected.

Case (iii) If p ∈ V and q /∈ V , then consider x0 = (0, 0). This point is on the intersection between the arc and V. By the
first case, p and x0 are path connected, and by the second case, q and p are path connected. Thus, p, q are path
connected by the lemma.
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Next, we will show that it is not locally path connected. Denote x0 as the intersection of V and the arc and consider the
neighbourhood around it defined by

U = R2 \ {x′} (0.8)

where x′ 6= x0 is a point on the arc. This is open since removing a single point from an open set is still open.

Note that this is homeomorphic to the regular topologist’s sine curve union a straight line. That is,

U ∩ C ' C ′ ∪H, (0.9)

where C ′ is the regular topologist’s sine curve and H = {(x, 0) : x < 0}. This homeomorphism is not hard to construct,
as all we have to do is map an open interval of the arc to an infinite interval. We need the following lemma,

Lemma 2: In the regular topologist’s sine curve C ′, there exists a point p ∈ V such that in any open neighborhood
around p, there exists r ∈ C ′ such that p, r are not path connected.

Proof. Recall that C ′ is not path connected, but we have proved in Case (ii) that it becomes path connected once
we remove the straight line, i.e. C ′ \ V is path connected. This means that there exists some point p ∈ V such
that there exists q ∈ C ′ such that p, q are not path connected.

This q ∈ C ′ is contained in C ′ \ V since we have shown in Case (i) that any two points in V is path connected.
Finally, recall that V is the limit set of the graph C ′ \ V, so for any open neighborhood around some point p ∈ V,
there exists some r ∈ C ′ \ V. We claim that p, r are not path connected. This is easy to show by contradiction.
We have shown that since r, q ∈ C ′ \ V, they are path connected. So if p, r are path connected and r, q are path
connected, then p, q are path connected, which is a contradiction.

Now, we will use the above lemma to show that given the p in the previous lemma, in any neighborhood around p there
exists a q ∈ C ′ ∪H such that p, q are not path connected. To do this, we find p, q as given above. We need to show
that there does not exist a path from p to q that passes through H This is impossible since if we remove the straight
line, then H and C ′ \ V are not connected, so any path from H to C ′ \ V must pass through V. Thus, p, q are not path
connected.

Therefore, we found a p ∈ V ⊆ C ′ ∪H such that any open neighborhood around it, there exists a q ∈ C ′ \ V ⊆ C ′ ∪H
such that p, q are not path connected. Since C ′ ∪H is homeomorphic to U ∩C, then the same holds true for p ∈ U ∩C.

We have constructed a neighborhood U around p such that any subneighbourhood of U is not path connected since we
can find a q in any open neighborhood of p such that p, q are not path connected.
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2. Let ε > 0. We wish to show that there exists a δ > 0 such that for any p, q ∈ M we have d(p, q) < δ implies
d(f(p), f(q)) < ε.

To construct such a δ, we will first cover f(M) ⊆ N by a finite number of open balls with radius ε/2. This is possible
because f is a continuous function and M is compact, so f(M) is compact, which implies it is totally bounded. Now,
we consider the preimage of each of these balls. It is easy to show that the preimage of all these balls is an open cover
for M (because for any p ∈ M , there is a ball that covers f(p) and thus the preimage of this ball covers p and is open
since f is continuous). Let this open cover be U .

By the Lebesgue Number Lemma, there exists λ > 0 such that for any p ∈ M, the ball of radius λ centered at p is
contained in one of the open sets in U . Then let δ = λ. If d(p, q) < δ, then there is an open ball Bλ ⊆M that contains
p and q. Since there exists U ∈ U such that Bλ ⊆ U, we have

d(p, q) < δ =⇒ p, q ∈ U (0.10)

which implies that f(p), f(q) ∈ f(U). But f(U) is a ball of radius ε/2, so d(f(p), d(q)) < ε, as desired.
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3. We will do this in several steps.

(1) Any element in [0, 1] can be uniquely written as
∞∑
n=1

an
2n where an ∈ {0, 1}.

(2) Given any selection of a1, a2, . . . the number
∞∑
n=1

2an
3n is an element of the middle-thirds Cantor set constructed

from [0, 1].

(3) Any point on the Cantor set can be written in this way.

(4) The choice of ai is unique for any element in C.

(5) Let the Cantor set be C. Consider the function f : C → [0, 1] via the map x 7→
∞∑
n=1

an
2n , where an ∈ {0, 1} is given

by (1). Then if x1, x2 ∈ [0, 1] with x1 < x2, then f(x1) < f(x2).

(6) The function f is continuous since the pre-image of a closed set [a, b] ∈ [0, 1] is closed.

We will do the above:

Proof of (1) This is trivial since any number has a unique binary representation.

Proof of (2) We will first show that
∞∑
n=1

2an
3n is an element of the middle-thirds Cantor set. To do this we claim that

N∑
n=1

2an
3n ∈ CN , (0.11)

where CN is the middle-thirds Cantor set constructed from [0, 1] with N iterations. In fact, we will prove something
that is more specific: that these numbers are containd in the left boundary of each interval in CN .

We will prove this by induction on N. Suppose N = 1. Then C1 = [0, 1/3] ∪ [2/3, 1]. We have two cases: an = 0
or an = 1. The two cases correspond to 0

3 ,
2
3 ∈ ∂C1.

Now suppose that
k∑

n=1

2an
3n ∈ Ck for any choice of (an) where 1 ≤ n ≤ k. We again have two cases, but first we

need to characterize Ck+1.

Lemma 3: Ck+1 has intervals of length 1
3k .

Proof. Recall that Ck+1 can be constructed from Ck by removing the middle third of each interval in Ck.
Each of these middle thirds has a length 1

3k .

Clearly if k = 1 then the interval that is being removed has length 1/3, so each of the intervals has length
1/3. If this process is repeated k times, then it can be shown (i.e. using induction) that removing the middle
thirds of an interval of length 1

3k results in intervals of length 1
3k+1 .

Lemma 4: ∂Ck+1 ⊇ ∂Ck and ∂LCk+1 ⊇ ∂LCk. Here, ∂L denotes the boundary that is on the left of an
interval.

Proof. Because to construct Ck+1 frmo Ck, we remove the middle thirds of each closed interval (which is
contained in the interior), the boundaries are never affected.

We can then write

ck+1 =
k+1∑
n=1

2an
3n = ck + 2ak+1

3k+1 (0.12)
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where ck is any element that can be written in the form
k∑

n=1

2an
3n . If ak+1 = 0 then ck+1 = ck. By Lemma 4, ck is

contained in the left boundary of Ck+1 so ck+1 is contained in the left boundary of Ck+1.

If ak+1 = 1 then ck+1 = ck + 2
3k+1 . By Lemma 3, the interval that ck is the left boundary becomes broken down

into three equal subintervals of length 1/3k+1 in Ck+1, so ck + 2
(
1/3k+1) will correspond to the left boundary of

the rightmost subinterval.

This completes the induction, and is true for all k ≥ 1. We have shown that
k∑

n=1

2an
3n ∈ C (0.13)

for all k, so
∞∑
n=1

2an
3n ∈ C since C is closed, so it contains all its limit points.

Proof of (3) Now we will prove that any element in C can be written as
∞∑
n=1

2an
3n . To do so, we show that if we write down

x ∈ C in base 3, which can be done uniquely, the expansion does not contain a 1 or if it does contain a 1, it can be
rewritten such that it does not. We prove this by contradiction. Consider the base 3 expansion as

x = (a1a2 . . . )3 (0.14)

and define k = min {i : ai = 1} . We can then write:

x = (a1a2 · · · ak−11)3 + (0 · · · 0ak+1ak+2 · · · )3. (0.15)

Recall that (a1 · · · ak−1)3 corresponds to the left boundary of an interval with length 1
3k−1 in Ck−1. Therefore,

(a1a2 · · · ak−11)3 = (a1a2 · · · ak−1)3 + 1
3k corresponds to the right endpoint of the same interval. This is a point

in C. The next point in C that is to the right of this point is a distance 1
3k−1 away. We have three cases:

Case (1) If ai = 0 for i > k then x = (a1a2 · · · ak−11)3. This can be written as

x = (a1a2 · · · ak−10222 · · · )3 (0.16)

= (a1a2 · · · ak−1)3 +
∞∑

i=k+1

2
3i (0.17)

= (a1a2 · · · ak−1)3 + 2
3k+1

1
1− 1/3 (0.18)

= (a1a2 · · · ak−1)3 + 1
3k (0.19)

= (a1a2 · · · ak−11)3. (0.20)

Case (2) If ai = 2 for i > k then x = (a1a2 · · · ak−12)3. This can be written as

x = (a1a2 · · · ak−11222 · · · )3 (0.21)

= (a1a2 · · · ak−11)3 +
∞∑

i=k+1

2
3i (0.22)

= (a1a2 · · · ak−11)3 + 1
3k (0.23)

= (a1a2 · · · ak−12)3. (0.24)

Case (3) For any other case, note that we can write x = (a1a2 · · · ak−11)3 + ∆x where

0 < ∆x < 1
3k , (0.25)

since the lower and upper bounds can only be achieved when they are all zero or all two (as shown above).
Anything else will be sandwiched in between. Then x will not be contained in C.
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In the first two cases, we can write x as the sum
∞∑
n=1

2an
3n , and we have shown that the third case is impossible.

Proof of (4) We will show that the choice of an is unique. This is not immediately trivial since we have already seen that
(12)3 = (2)3. Suppose we can write x in two different ways:

x =
∞∑
n=1

2an
3n =

∞∑
n=1

2bn
3n . (0.26)

Let k be the first index in which ak 6= bk. Without loss of generality, let ak = 0 and bk = 1. We claim that if this is
the case, then

∞∑
n=1

2an
3n <

∞∑
n=1

2bn
3n . (0.27)

To do this, note that

∞∑
n=1

2an
3n =

k−1∑
n=1

2an
3n + 0 +

∞∑
n=k+1

2an
3n (0.28)

≤
k−1∑
n=1

2bn
3n +

∞∑
n=k+1

2
3n (0.29)

≤
k−1∑
n=1

2bn
3n + 2

3k+1
1

1− 2/3 (0.30)

≤
k−1∑
n=1

2bn
3n + 1

3k (0.31)

≤ (b1 · · · bk−11)3 (0.32)
< (b1 · · · bk−12)3 (0.33)

≤ (b1 · · · bk−12bk+1 · · · )3 =
∞∑
n=1

2bn
3n . (0.34)

Therefore, we have shown that any
∞∑
n=0

2an
3n corresponds to an element of C and each element in C can be uniquely

written in this form.

Proof of (5) We claim that the function is monotonic. That is, given x1, x2 ∈ [0, 1] with x1 < x2, we have that f−1(x1) ≤
f−1(x2). Consider the sequence (an) that represents x1 and the sequence (bn) that represents x2. Let k be the
smallest index such that ak 6= bk. Specifically, this implies that ak = 0 and bk = 1 since:

x1 =
∞∑
n=0

an
2n =

k−1∑
n=0

an
2n + 0 +

∞∑
n=k+1

an
2n (0.35)

<

k−1∑
n=0

bn
2n +

∞∑
n=k+1

1
2n (0.36)

=
k−1∑
n=0

bn
2n + 1

2k (0.37)

≤ x2, (0.38)
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so we confirm that x1 < x2. We can apply the same line of reasoning to f−1(x1) and f−1(x2). That is,

f−1(x1) =
∞∑
n=0

2an
3n =

k−1∑
n=0

2an
3n + 0 +

∞∑
n=k+1

2an
3n (0.39)

≤
k−1∑
n=0

2bn
3n +

∞∑
n=k+1

2
3n (0.40)

≤
k−1∑
n=0

2bn
3n + 1

3k (0.41)

<

k−1∑
n=0

2bn
3n + 2

3k ≤ f
−1(x2), (0.42)

so f−1(x1) < f−1(x2).

Proof of (6) Consider the closed interval [a, b] ∈ [0, 1]. Then we claim that

f−1([a, b]) = [f−1(a), f−1(b)] ∩ C. (0.43)

First, note that clearly f−1([a, b]) ⊆ C by (1) and (2) and f−1([a, b]) ∈ [f−1(a), f−1(b)] since the function is
monotonic as per (5). More specifically, the boundary of [a, b] gets mapped to the boundary of [f−1(a), f−1(b)] and
everything in the interior of [a, b] gets mapped to the interior of [f−1(a), f−1(b)] due to the monotonic property.
Therefore, f−1([a, b]) ⊆ [f−1(a), f−1(b)] ∩ C.

Finally, we will show that [f−1(a), f−1(b)] ∩ C ⊆ f−1([a, b]). If there were to exist some element

y ∈ [f−1(a), f−1(b)] ∩ C,

then by f−1 being an increasing function, we must have a < f(y) < b, so y ∈ f−1[a, b].

Note that [f−1(a), f−1(b)] ∩ C is the intersection of two closed sets, which is closed.

We are almost done! One might be tempted to say that every closed set in [0, 1] is constructed from a union of closed
sets, so the preimage of any closed set is closed. This is tricky to prove because the union of an infinite number of closed
sets is not necessarily closed. Instead, we will use this result to prove that the preimage of any open set is open.

Consider
f−1((a, b)) = f−1([a, b]) \ {f−1(a), f−1(b)} = int

(
f−1([a, b])

)
. (0.44)

The interior is always open, so f−1((a, b)) is open. Any open set can be written as a union of open sets, so the preimage
of any open set A = ∪α(aα, bα) is

f−1A = f−1
⋃
α

(aα, bα) =
⋃
α

f−1(aα, bα). (0.45)

Because the preimage of any open set is open, and f is surjective, we found a surjective function from the Cantor set to
[0, 1].
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4. (a) Consider Qm ⊆ Rm. Clearly, Qm = Q × Q × · · · × Q is countable since the direct product of a finite number of
countable sets is countable. It is dense in Qm by the following reasoning: Take x = (x1, . . . , xm) ∈ Q. For every
open ball Br(x) around x with radius r > 0, there exists a subset

{(x1 + δ1, x2 + δ2, . . . , xm + δm) : −r/3 < δi < r/3, i = 1, . . . ,m} ⊆ Br(x) (0.46)
=⇒ (x1 − r/3, x1 + r/3)× · · · × (xm − r/3, xm + r/3) ⊆ Br(x) (0.47)

But since Q is dense in R, there is a rational number in each of the open sets (x1− r/3, x1 + r/3). Therefore, there
is a rational number in Br(x) and

Br(x) ∩Qm 6= ∅. (0.48)

(b) We will construct a countable dense subset. Pick any λ > 0. Because the metric space M is compact, it is totally
bounded, so we can cover it with a finite number of open balls of radius λ/i where i ∈ Z. Let Bi,1, Bi,2, . . . be
these balls. In each open set, select an arbitrary point, and denote the set of these points as Ui = {pi,1, pi,2, . . . }.

Now, we perform this construction with i = 1, 2, 3, . . . , giving us the collection of open sets

U = {U1, U2, U3, . . . } (0.49)

and let V =
∞⋃
i=1

Ui. Then V is a countable dense subset of M. A countable union of finite sets is countable, so V

is countable. It remains to show that V is dense in M.

Consider an arbitrary p ∈M. Then for any open ball Br(p) with radius r > 0, there exists i ∈ Z such that λ
i
< r/2.

Then in the λ/i covering of M, there exists an open ball Bi,j with radius λ/i that contains p. Since the diameter
of Bi,j is smaller than the radius of Br(p) and they both contain p, we have

p ∈ Bi,j ⊆ Br(p). (0.50)

But by our construction, there is a point pi,j ∈ Ui and recall that pi,j ∈ Ui ⊆ V. Therefore, V ∩Br(p) 6= ∅ for any
r > 0 and any point p, so V is dense in M.
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5. I claim that R equipped with the trivial metric is nonseparable. We prove via contradiction and assume that it is separable.
Let the countable dense subset be V. Recall that the trivial metric is

d(x, y) =
{

0 if x = y

1 if x 6= y
(0.51)

and every subset is open. Therefore, {x} is an open subset containing x ∈ R. Because V is dense, it needs to have a
nonempty intersection with all open subsets that contain x, so V ∩ {x} 6= ∅ for all x ∈ R. This implies that x ∈ V for
all x ∈ R and so V = R. But the reals are uncountable, so V is not countable, a contradiction. Therefore, R is not
separable under the trivial metric.
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