MAT357: Real Analysis Problem Set 5

QiLin Xue

2022-2023

I worked with Ahmad, and Nathan on this problem set.

1. We will make use of the following lemma,

Lemma 1: If *f* is continuous and constant on the rationals, then it is constant on the reals.

Proof. Let $f(q) = C$ for all rationals $q \in \mathbb{Q}$. Suppose for the sake of contradiction that f is not constant on the irrationals. That is, there exists some $a \in \mathbb{Q}^c$ such that $f(a) \neq C$. Set $\epsilon = |f(a) - C|$.

Because *f* is continuous at *a*, there exists $\delta > 0$ such that

$$
|x - a| < \delta \implies |f(x) - f(a)| < \frac{\epsilon}{2}.\tag{0.1}
$$

But because the rationals are dense in the reals, there exists some $q \in \mathbb{Q}$ such that $|q - a| < \delta$, and by definition of continuity, we have

$$
|f(q) - f(a)| < \epsilon/2. \tag{0.2}
$$

But we defined $\epsilon = |f(q) - f(a)|$, so we have a contradiction. Note that we don't actually need the $\epsilon/2$ part and can keep it at ϵ , but the factor of 2 was introduced for emphasis that it's not something weird happening at the boundary of the inequality. \Box

I claim that *f* is constant on the reals by showing it is constant on the rationals. Suppose for the sake of contradiction that *f* is not constant on the rationals. Then there exists a rational number $p/q \in \mathbb{Q}$ where $p, q \in \mathbb{Z}$ and $gcd(p, q) = 1$ such that $f(p/q) \neq f(0)$. Let $\epsilon = |f(p/q) - f(0)|$.

Because $f_n(x)$ is equicontinuous, there exists $\delta > 0$ such that $|t| < \delta$ implies that $|f_n(0) - f_n(t)| < \frac{\epsilon}{2}$ $\frac{1}{2}$ for all *n*. Using the definition of *fn,* this implies that

$$
|f(0) - f(nt)| < \frac{\epsilon}{2} \tag{0.3}
$$

for all *n*. However, note that there exists $N \in \mathbb{N}$ such that $\Big|$ *p Nq < δ.* Set *t* = *p* $\frac{P}{Nq}$ such that we now have:

$$
\left| f(0) - f\left(n \frac{p}{Nq}\right) \right| < \frac{\epsilon}{2}.\tag{0.4}
$$

for all $n \in \mathbb{N}$. Pick $n = N$ so we now have:

$$
\left| f(0) - f\left(\frac{p}{q}\right) \right| < \frac{\epsilon}{2} \implies \epsilon < \frac{\epsilon}{2},\tag{0.5}
$$

a contradiction. Using the lemma, because it is constant on the rationals, and *f* is continuous, it must be constant on the irrationals as well.

2. (a) WLOG let us set $[a, b] = [0, 1]$ (we can apply a simple rescaling argument later).

Because (f_n) is equicontinuous, pick any $\epsilon > 0$. Then there exists $\delta > 0$ such that $|s - t| < \delta, n \in \mathbb{N}$ implies that $|f_n(t) - f_n(s)| < \epsilon$. There exists *N* ∈ N such that $1/N < \delta$. Then,

$$
d(f_n(0), f_n(1)) < d(f_n(0), f_n(1/N)) + d(f_n(1/N), f_n(2/N)) + \dots + d(f_n((N-1)/N), f_n(1))
$$
\n
$$
< N\epsilon,
$$
\n(0.7)

which is true for all n. This is just a rigorous way of saying that $[0,1]$ is covered by a finite number of open intervals with radius smaller than *δ* and the maximum change in *fⁿ* in each of those open intervals is smaller than *δ,* so $d(f_n(0), f_n(1)) < N\epsilon$ for some $N \in \mathbb{N}$.

Also note that the maximum and minimum of f_n is bounded by this same $N\epsilon$, using the same line of reasoning. Because the minimum/maximum exist since *fⁿ* is a continuous function on a compact set, we can let *fn*(*xm*) be a minimum and $f_n(x_M)$ be a maximum.

Because $0 \le x_m, x_M \le 1$, the interval $[x_m, x_M]$ is contained in a finite union of the above intervals of radius δ and by the same logic, we have

$$
d(f_n(x_m), f_n(x_M)) < N\epsilon. \tag{0.8}
$$

This means that each *fⁿ* is individually bounded by

$$
f_n(p) - N\epsilon < f_n(x) < f_n(p) + N\epsilon \tag{0.9}
$$

for some $p \in [0, 1]$. Now because $(f_n(p))$ is bounded, there exists a finite

$$
m := \inf\{f_n(p)\}\tag{0.10}
$$

$$
M := \sup\{f_n(p)\}.\tag{0.11}
$$

Then $f_n(x)$ is uniformly bounded since

$$
\sup\{f_n(x)\} < \sup\{f_n(p) + N\epsilon\} \le M + N\epsilon \tag{0.12}
$$

$$
\inf\{f_n(x)\} > \inf\{f_n(p) - N\epsilon\} \ge m - N\epsilon,\tag{0.13}
$$

so

$$
m - N\epsilon \le f_n(x) \le M + N\epsilon. \tag{0.14}
$$

- (b) If (f_n) is an equicontinuous sequence of functions in $C^0([a,b],\mathbb{R})$ such that $(f_n(p))$ is bounded, then (f_n) has a uniformly convergent subsequence.
- (c) i. For (a, b) : In the previous part, we used the fact that $[a, b]$ is compact to show that each f_n is bounded, but we actually didn't need to do so. Because each *fⁿ* is uniformly continuous on a bounded interval, we can create a finite open cover for (0*,* 1) with intervals of radius *δ.* In each of these intervals, the function *fⁿ* can change by a maximum of ϵ (due to uniform continuity), so by triangle inequality, we can write

$$
d(f_n(s), f_n(t)) < N\epsilon \tag{0.15}
$$

for some $N \in \mathbb{N}$ which is valid for all $s, t \in (0, 1)$. Now that we know f_n is bounded. We still have

$$
f_n(p) - N\epsilon < f_n(x) < f_n(p) + N\epsilon \tag{0.16}
$$

since $|f_n(x) - f_n(p)| < N\epsilon$. So the rest of the proof still applies.

Another quick way to see this is to extend f to \bar{f} : $[a, b] \to \mathbb{R}$ as in problem set 2. This extension is unique and uniformly continuous, and with a bit of extra work, we can show that it is uniformly continuous with the same δ as before. Then \bar{f}_n is equicontinuous, and we can apply the exact same proof as before. And if (\bar{f}_n) is uniformly bounded, then so must (f_n) be uniformly bounded.

ii. For $\mathbb R$, consider the equicontinuous sequence $f_n(x) = x$ (the functions are all the same). Each f_n is uniformly continuous with $\delta = \epsilon$ (from first-year calculus) and because all the functions are the same, it is equicontinuous.

Also, because the functions are the same, $f_n(p)$ is bounded (as it is just the same point over and over again). However, (*fn*) is not uniformly bounded because each individual function is not bounded.

iii. For \mathbb{Q}, \mathbb{N} we can consider the same sequence as before, $f_n(x) = x$. Note that this is still uniformly continuous since the metric is induced from R. Therefore, if $f : M \to \mathbb{R}$ is uniformly continuous, then $f|_S : S \to \mathbb{R}$ is uniformly continuous, where $S \subseteq M$.

So by the same reasons, the preconditions hold, but (f_n) is not uniformly bounded since $f_n(x)$ is not bounded.

3. (a) **Convergence on a countable dense subset:** The proof for this is very similar to the proof of the Arzela-Ascoli Theorem. Since M is compact, consider any countable dense subset $D \in \{d_1, d_2, \dots\} \subseteq M$. Now consider the sequence

$$
i_1(d_1), \quad i_2(d_1), \quad i_3(d_1), \quad \dots \tag{0.17}
$$

This is a sequence of points in *M,* so there exists a converging subsequence

. .

$$
i_{n_{1,1}}(d_1), \quad i_{n_{2,1}}(d_1), \quad i_{n_{3,1}}(d_1), \quad \dots
$$
\n(0.18)

Now consider the sequence

$$
i_{n_{1,1}}(d_2), \quad i_{n_{2,1}}(d_2), \quad i_{n_{3,1}}(d_2), \quad \dots \tag{0.19}
$$

Again, this has a converging subsequence

$$
i_{n_{1,2}}(d_2), \quad i_{n_{2,2}}(d_2), \quad i_{n_{3,2}}(d_2), \quad \ldots \tag{0.20}
$$

We can repeat this process, in order to create a countable number of converging subsequences, where the isometries involved in each sequence are a subset of the isometries used in the previous sequence. That is, we have:

$$
i_{n_{1,1}}(d_1), \quad i_{n_{2,1}}(d_1), \quad i_{n_{3,1}}(d_1), \quad \dots \tag{0.21}
$$

$$
i_{n_{1,2}}(d_2), \quad i_{n_{2,2}}(d_2), \quad i_{n_{3,2}}(d_2), \quad \dots \tag{0.22}
$$

$$
i_{n_{1,3}}(d_3), \quad i_{n_{2,3}}(d_3), \quad i_{n_{3,3}}(d_3), \quad \dots \tag{0.23}
$$

$$
\vdots \hspace{1.5cm} (0.24)
$$

 \Box

Now consider the sequence of isometries $i_{n_{1,1}}, i_{n_{2,2}}, i_{n_{3,3}}, \ldots$. We will show that this sequence converges over $D.$ For any point $d_k \in D$, there exists $N \in \mathbb{N}$ (i.e. $N = k$) such that $j > N$ implies that $i_{n_{j,j}} \subseteq \{i_{n_{1,k}}, i_{n_{2,k}}, \dots\}$, which was defined to send *d^k* to a convergent sequence.

Convergence on M: We will use the following lemma:

Lemma 2: For any $x \in M$ and $\delta > 0$, we can pick $d_j \in D$ such that $d(d_j, x) < \delta$ and $j \leq J$, where $J \in \mathbb{N}$ is picked large enough such that every $x \in M$ is within δ of some d_j with $j \leq J$.

Proof. Because *M* is compact, it is totally bounded, so we can cover it with a finite number of balls with radius $\delta/2$ for all $\delta > 0$. Every ball contains a point $d_{j_k} \in D$ such that the distance between any point in this ball and *d* is less than *δ.*

 $\text{Pick } J = \max\{d_{j_1}, \ldots, d_{j_k}\}.$

For all $\epsilon > 0$ there exists N such that $n_k, n_\ell > N$ implies for all x, we can find a d_j such per the lemma above such that:

$$
d(i_{n_k}(x), i_{n_\ell}(x)) \le d(i_{n_k}(x), i_{n_k}(d_j)) + d(i_{n_k}(d_j), i_{n_\ell}(d_j)) + d(i_{n_\ell}(d_j), i_{n_\ell}(x)) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.
$$
 (0.25)

We know that $d(i_{n_k}(x),i_{n_k}(d_j))=d(i_{n_\ell}(d_j),i_{n_\ell}(x))<\epsilon/3$ since $d(x,d_j)<\epsilon$ per the lemma above.

Furthermore, we also know that $d(i_{n_k}(d_j),i_{n_\ell}(d_j))<\epsilon/3$ for large enough N since $i_{n_{k'}}(d_j)$ converges in M , so it must be Cauchy. Note that here, N depends on the choice of d_j , but since from the lemma there are a finite number of d_j 's for a given ϵ , we can pick N to pick

Note that there exists an $N \in \mathbb{N}$ such that for all $x,$ we have $d(i_{n_k}(x), i_{n_\ell}(x)) < \epsilon,$ so this gives us uniform convergence as well.

 $\bf{Converges\ to\ isometry:}$ What remains to be shown is that i_{n_k} converges to an isometry. $\bf{Consider\ arbitrary}$ $p,q\in M.$ We have shown that $i_{n_k}(p)\to i(p)=p_0$ and $i_{n_k}(q)\to i(q)=q_0.$ We must show that $d(p_0,q_0)=d(p,q).$

We prove this by contradiction. Suppose for the sake of contradiction that

$$
|d(i(p), i(q)) - d(p, q)| = \epsilon > 0.
$$
\n(0.26)

However, by triangle inequality:

$$
d(i(p), i(q)) \le d(i(p), i_{n_k}(p)) + d(i_{n_k}(p), i_{n_k}(q)) + d(i_{n_k}(q), i(q)) = d(i(p), i_{n_k}(p)) + d(i_{n_k}(q), i(q)) + d(p, q),
$$
\n(0.27)

so

$$
d(i(p), i(q)) - d(p, q) \le d(i(p), i_{n_k}(p)) + d(i_{n_k}(q), i(q)).
$$
\n(0.28)

However, since $i_{n_k}(p)\to i(p)$ and $i_{n_k}(q)\to i(q),$ there exists some N such that $k>N$ implies that $d(i(p),i_{n_k}(p))<$ $\epsilon/2$ and $d(i_{n_k}(q),i(q)) < \epsilon/2.$ So we have:

$$
|d(i(p), i(q)) - d(p, q)| < \epsilon,\tag{0.29}
$$

contradicting the assumption that $|d(i(p), i(q)) - d(p, q)| = \epsilon$. Therefore, the sequence of isometries converges to an isometry.

- (b) The space of self isometries is compact if any sequence of isometries has a convergent subsequence. We proved this for arbitrary sequences of isometries in part (a), so this space must be compact.
- (c) We prove this directly. Consider an arbitrary $x \in M$. We wish to show that

$$
i_{n_1}^{-1}(x), \ldots, i_{n_2}^{-1}(x), \ldots \tag{0.30}
$$

converges to $i^{-1}.$ To do so, for any $\epsilon>0,$ we want to show there exists $K\in\mathbb{N}$ such that $k>K$ implies that $d(i_{n_k}^{-1}(x),i^{-1}(x))<\epsilon.$ But by the definition of isometries, we have

$$
d(i_{n_k}^{-1}(x), i^{-1}x) = d(x, i_{n_k}(i^{-1}(x))) = d(i(i^{-1}x), i_{n_k}(i^{-1}x)) = d(i(p), i_{n_k}(p)),
$$
\n(0.31)

where $p=i^{-1}x.$ But because i_{n_k} uniformly converges to $i,$ there exists $K\in\mathbb{N}$ such that for all points $p\in M$ we have that $d(i(p), i_{n_k}(p)) < \epsilon.$ Therefore, if we pick this same K value for all choices of $x,$ we have

$$
d(i_{n_k}^{-1}(x), i^{-1}x) < \epsilon,\tag{0.32}
$$

as desired.

- (d) See part (e)
- (e) Yes, they are compact. The group of $m \times m$ orthogonal matrices is isomorphic to $O(m)$, which defines isometries of \mathbb{R}^m that fixes the origin. It is a standard linear algebra exercise to show that this corresponds to isometries on the unit *m* − 1 sphere. This is a compact space, and we've shown that the space of self-isometries on compact spaces is compact, so $O(m)$ is compact.

4. (a) Consider the function

$$
f(x,y) = \begin{cases} 0 & \text{if } x = y = 0\\ x^y y^x & \text{else.} \end{cases}
$$
 (0.33)

This is symmetric in *x* and *y*, so we just need to check that for each fixed $y = y_0$ the function $g: x \mapsto f(x, y)$ is a continuous function in *x*. We have two cases:

• Case 1: $y_0 \neq 0$. In this case, we have

$$
g(x) = \begin{cases} 0 & \text{if } x = 0\\ x^{y_0} y_0^x & \text{else.} \end{cases}
$$
 (0.34)

This is continuous at $x > 0$ because x^{y_0} and y_0^x are both continuous, so their product is continuous. It is also continuous at $x = 0$ because $\lim_{x \to 0^+} x^{y_0} y_0^x = 0$.

• Case 2: $y_0 = 0$. In this case, we have:

$$
g(x) = \begin{cases} 0 & \text{if } x = 0\\ x^0 0^x & \text{else.} \end{cases}
$$
 (0.35)

Note that $x^00^x = 0$ for all $x \neq 0$, so $g(x) = 0$ everywhere, and it is continuous.

Now, we just need to show that *f* is not continuous, specifically at (0*,* 0)*.* Consider restricting the function to the set $S = \{(t, t) \in \mathbb{R}^2 : t \in [0, 1]\}$. Let this restriction be h . We then have

$$
h(t) = \begin{cases} 0 & t = 0\\ (t^t)^2 & t \neq 0. \end{cases}
$$
 (0.36)

However, this is not continuous at $t=0$ since $\lim_{t\to 0^+}(t^t)^2=1\neq 0.$ Since a restriction of the function on the domain $[0,1] \times [0,1]$ is not continuous, then the function is not continuous.

(b) Consider a sequence (x_n, y_n) that converges in $[0, 1] \times [0, 1]$. We wish to show that $(f(x_n, y_n))$ also converges, which would imply that *f* is continuous.

Let (x_n, y_n) converge to (x_0, y_0) . Then for all $\delta > 0$, there exists $N \in \mathbb{N}$ such that $n > N \implies |x_0 - x_n| <$ δ , $|y_0 - y_n| < \delta$.

Let $g(y) = f(x_0, y)$. Because $g(y)$ is continuous, for every $\epsilon >0,$ there exists $\delta >0$ such that $|y_0-y_n|<\delta \implies$ $|g(y_0) - g(y_n)| < \frac{\epsilon}{2}$ $\frac{\epsilon}{2} \implies |f(x_0, y_0) - g(x_0, y_n)| < \frac{\epsilon}{2}$ $\frac{1}{2}$.

Let $h_y(x) = f(x, y)$ be the restriction of f to a certain y value. Because these are equicontinuous for each y, we have that $|x_0 - x_n| < \delta \implies |h_{y_n}(x_0) - h_{y_n}(x_n)| < \epsilon \implies |f(x_0, y_n) - f(x_n, y_n)| < \epsilon$.

We can now put everything together. Consider an arbitrary *δ >* 0*,* and pick the corresponding *N* ∈ N such that both $|x_0 - x_n| < \delta$ and $|y_0 - y_n| < \delta$ is satisfied for all $n > N$. Then by the triangle inequality, and using the above results, we have:

$$
|f(x_0, y_0) - f(x_n, y_n)| \le |f(x_0, y_0) - f(x_0, y_n)| + |f(x_0, y_n) - f(x_n, y_n)| \tag{0.37}
$$

$$
\langle \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \tag{0.38}
$$

where the last line follows from continuity of $g(y)$ and equicontinuity of $h_y(x)$.

5. Let

$$
P_n(x) = a_{10,n}x^{10} + a_{9,n}x^9 + \dots + a_{0,n}x^0.
$$
\n(0.39)

Note that each coefficient $(a_{i,n})$ forms a bounded sequence since $P_n(x)$ converges to 0 on [0, 1], so they must be bounded. Because the coefficients are all bounded, we must have that $P_n(x)$ is uniformly bounded on [0, 1] and so are the derivatives. Because they are uniformly bounded on a compact set, they are equicontinuous, so we get uniform convergence of $P_n(x)$ and its derivatives.

We just need to prove that (*ai,n*) forms a bounded sequence.

Lemma 3: (*ai,n*) forms a bounded sequence.

Proof. These 11 coefficients are uniquely determined by 11 points of $P_n(x)$. Pick 11 arbitrary points in [0,1]. Because it converges point-wise at these 11 points, then these coefficients cannot grow without bound.

Note: I couldn't quite finish the proof here, but it makes sense that if any of the coefficients were to grow unbounded, then $P_n(x)$ cannot converge. An alternative way to prove this is to map this to a problem in \R^{11} and match the coefficients to coordinates and in \mathbb{R}^n a point converges to 0 if all the components converge to 0 \Box

By extension, all higher derivatives will be uniformly continuous on $[0, 1]$. We can apply this to the problem, where $d = 10$. Suppose

$$
P_n(x) = a_{10,n}x^{10} + a_{9,n}x^9 + \dots + a_{0,n}x^0.
$$
\n(0.40)

We can show that all the coefficients approach zero, i.e. $a_{k,n} \to 0$. To do this, the *k*th derivative is

$$
G_{k,n}(x) = \frac{d^k}{dx^k} P_n(x) = c_{10,k} a_{10,n} x^{10-k} + c_{9,k} a_{9,n} x^{9-k} + \dots + c_{k,k} a_{k,n},
$$
\n(0.41)

where $c_{i,k} = i(i-1)\cdots(i-k+1)$ come from repeated applications of the power rule. But from the lemma, we know that $G_{k,n}(x)$ uniformly approaches 0 on [0, 1], so $G_{k,n}(0) \to 0$. But $G_{k,n}(0) = c_{k,k} a_{k,n}$, and since $c_{k,k} > 0$ is a constant that doesn't depend on *n*, we have that $a_{k,n} \to 0$.

We have shown that all the coefficients approach 0. We will now use this to show that $P_n(x)$ uniformly converges to 0 on the interval [4, 5] as well. Because $a_{i,n}\to 0$, we have that for all $\epsilon>0$, there exists $N\in\mathbb{N}$ such that $n>N$ implies that $|a_{i,n}| < \frac{\epsilon}{11}$ $\frac{1}{11 \cdot 5^{10}}$

Let $4 \leq x \leq 5$. By triangle inequality, we have:

$$
|P_n(x)| = |a_{10,n}x^{10} + a_{9,n}x^9 + \dots + a_{0,n}x^0|
$$
\n(0.42)

$$
\leq |a_{10,n}||x^{10}| + |a_{9,n}||x^9| + \dots + |a_{0,n}||x^0| \tag{0.43}
$$

$$
\leq |a_{10,n}| 5^{10} + |a_{9,n}| 5^{10} + \dots + |a_{0,n}| 5^{10}
$$
\n
$$
(0.44)
$$

$$
\langle \frac{\epsilon}{11} + \dots + \frac{\epsilon}{11} = \epsilon. \tag{0.45}
$$

For every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $n > N$ implies that $|P_n(x) - 0| < \epsilon$, so the sup-norm approaches 0 and $P_n(x) \to 0$ uniformly on [4, 5].