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I worked with Ahmad, and Nathan on this problem set.

1. We will make use of the following lemma,

Lemma 1: If f is continuous and constant on the rationals, then it is constant on the reals.

Proof. Let f(q) = C for all rationals q ∈ Q. Suppose for the sake of contradiction that f is not constant on the
irrationals. That is, there exists some a ∈ Qc such that f(a) 6= C. Set ε = |f(a)− C|.

Because f is continuous at a, there exists δ > 0 such that

|x− a| < δ =⇒ |f(x)− f(a)| < ε

2 . (0.1)

But because the rationals are dense in the reals, there exists some q ∈ Q such that |q − a| < δ, and by definition
of continuity, we have

|f(q)− f(a)| < ε/2. (0.2)

But we defined ε = |f(q)− f(a)|, so we have a contradiction. Note that we don’t actually need the ε/2 part and
can keep it at ε, but the factor of 2 was introduced for emphasis that it’s not something weird happening at the
boundary of the inequality.

I claim that f is constant on the reals by showing it is constant on the rationals. Suppose for the sake of contradiction
that f is not constant on the rationals. Then there exists a rational number p/q ∈ Q where p, q ∈ Z and gcd(p, q) = 1
such that f(p/q) 6= f(0). Let ε = |f(p/q)− f(0)|.

Because fn(x) is equicontinuous, there exists δ > 0 such that |t| < δ implies that |fn(0) − fn(t)| < ε

2 for all n. Using
the definition of fn, this implies that

|f(0)− f(nt)| < ε

2 (0.3)

for all n. However, note that there exists N ∈ N such that
∣∣∣∣ pNq

∣∣∣∣ < δ. Set t = p

Nq
such that we now have:

∣∣∣∣f(0)− f
(
n
p

Nq

)∣∣∣∣ < ε

2 . (0.4)

for all n ∈ N. Pick n = N so we now have:∣∣∣∣f(0)− f
(
p

q

)∣∣∣∣ < ε

2 =⇒ ε <
ε

2 , (0.5)

a contradiction. Using the lemma, because it is constant on the rationals, and f is continuous, it must be constant on
the irrationals as well.
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2. (a) WLOG let us set [a, b] = [0, 1] (we can apply a simple rescaling argument later).

Because (fn) is equicontinuous, pick any ε > 0. Then there exists δ > 0 such that |s − t| < δ, n ∈ N implies that
|fn(t)− fn(s)| < ε. There exists N ∈ N such that 1/N < δ. Then,

d(fn(0), fn(1)) < d(fn(0), fn(1/N)) + d(fn(1/N), fn(2/N)) + · · ·+ d(fn((N − 1)/N), fn(1)) (0.6)
< Nε, (0.7)

which is true for all n. This is just a rigorous way of saying that [0, 1] is covered by a finite number of open intervals
with radius smaller than δ and the maximum change in fn in each of those open intervals is smaller than δ, so
d(fn(0), fn(1)) < Nε for some N ∈ N.

Also note that the maximum and minimum of fn is bounded by this same Nε, using the same line of reasoning.
Because the minimum/maximum exist since fn is a continuous function on a compact set, we can let fn(xm) be a
minimum and fn(xM ) be a maximum.

Because 0 ≤ xm, xM ≤ 1, the interval [xm, xM ] is contained in a finite union of the above intervals of radius δ and
by the same logic, we have

d(fn(xm), fn(xM )) < Nε. (0.8)
This means that each fn is individually bounded by

fn(p)−Nε < fn(x) < fn(p) +Nε (0.9)

for some p ∈ [0, 1]. Now because (fn(p)) is bounded, there exists a finite

m := inf{fn(p)} (0.10)
M := sup{fn(p)}. (0.11)

Then fn(x) is uniformly bounded since

sup{fn(x)} < sup{fn(p) +Nε} ≤M +Nε (0.12)
inf{fn(x)} > inf{fn(p)−Nε} ≥ m−Nε, (0.13)

so
m−Nε ≤ fn(x) ≤M +Nε. (0.14)

(b) If (fn) is an equicontinuous sequence of functions in C0([a, b],R) such that (fn(p)) is bounded, then (fn) has a
uniformly convergent subsequence.

(c) i. For (a, b) : In the previous part, we used the fact that [a, b] is compact to show that each fn is bounded, but we
actually didn’t need to do so. Because each fn is uniformly continuous on a bounded interval, we can create a
finite open cover for (0, 1) with intervals of radius δ. In each of these intervals, the function fn can change by
a maximum of ε (due to uniform continuity), so by triangle inequality, we can write

d(fn(s), fn(t)) < Nε (0.15)

for some N ∈ N which is valid for all s, t ∈ (0, 1). Now that we know fn is bounded. We still have

fn(p)−Nε < fn(x) < fn(p) +Nε (0.16)

since |fn(x)− fn(p)| < Nε. So the rest of the proof still applies.

Another quick way to see this is to extend f to f̄ : [a, b] → R as in problem set 2. This extension is unique
and uniformly continuous, and with a bit of extra work, we can show that it is uniformly continuous with the
same δ as before. Then f̄n is equicontinuous, and we can apply the exact same proof as before. And if (f̄n) is
uniformly bounded, then so must (fn) be uniformly bounded.

ii. For R, consider the equicontinuous sequence fn(x) = x (the functions are all the same). Each fn is uniformly
continuous with δ = ε (from first-year calculus) and because all the functions are the same, it is equicontinuous.

Also, because the functions are the same, fn(p) is bounded (as it is just the same point over and over again).
However, (fn) is not uniformly bounded because each individual function is not bounded.

iii. For Q,N we can consider the same sequence as before, fn(x) = x. Note that this is still uniformly continuous
since the metric is induced from R. Therefore, if f : M → R is uniformly continuous, then f |S : S → R is
uniformly continuous, where S ⊆M.

So by the same reasons, the preconditions hold, but (fn) is not uniformly bounded since fn(x) is not bounded.
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3. (a) Convergence on a countable dense subset: The proof for this is very similar to the proof of the Arzela-Ascoli
Theorem. Since M is compact, consider any countable dense subset D ∈ {d1, d2, . . . } ⊆ M. Now consider the
sequence

i1(d1), i2(d1), i3(d1), . . . (0.17)

This is a sequence of points in M, so there exists a converging subsequence

in1,1(d1), in2,1(d1), in3,1(d1), . . . . (0.18)

Now consider the sequence
in1,1(d2), in2,1(d2), in3,1(d2), . . . . (0.19)

Again, this has a converging subsequence

in1,2(d2), in2,2(d2), in3,2(d2), . . . . (0.20)

We can repeat this process, in order to create a countable number of converging subsequences, where the isometries
involved in each sequence are a subset of the isometries used in the previous sequence. That is, we have:

in1,1(d1), in2,1(d1), in3,1(d1), . . . (0.21)
in1,2(d2), in2,2(d2), in3,2(d2), . . . (0.22)
in1,3(d3), in2,3(d3), in3,3(d3), . . . (0.23)
... (0.24)

Now consider the sequence of isometries in1,1 , in2,2 , in3,3 , . . . . We will show that this sequence converges over D.
For any point dk ∈ D, there exists N ∈ N (i.e. N = k) such that j > N implies that inj,j ⊆ {in1,k

, in2,k
, . . . },

which was defined to send dk to a convergent sequence.

Convergence on M: We will use the following lemma:

Lemma 2: For any x ∈ M and δ > 0, we can pick dj ∈ D such that d(dj , x) < δ and j ≤ J, where J ∈ N
is picked large enough such that every x ∈M is within δ of some dj with j ≤ J.

Proof. Because M is compact, it is totally bounded, so we can cover it with a finite number of balls with
radius δ/2 for all δ > 0. Every ball contains a point djk

∈ D such that the distance between any point in this
ball and d is less than δ.

Pick J = max{dj1 , . . . , djk
}.

For all ε > 0 there exists N such that nk, n` > N implies for all x, we can find a dj such per the lemma above such
that:

d(ink
(x), in`

(x)) ≤ d(ink
(x), ink

(dj)) + d(ink
(dj), in`

(dj)) + d(in`
(dj), in`

(x)) < ε

3 + ε

3 + ε

3 = ε. (0.25)

We know that d(ink
(x), ink

(dj)) = d(in`
(dj), in`

(x)) < ε/3 since d(x, dj) < ε per the lemma above.

Furthermore, we also know that d(ink
(dj), in`

(dj)) < ε/3 for large enough N since ink′ (dj) converges in M, so
it must be Cauchy. Note that here, N depends on the choice of dj , but since from the lemma there are a finite
number of dj ’s for a given ε, we can pick N to pick

Note that there exists an N ∈ N such that for all x, we have d(ink
(x), in`

(x)) < ε, so this gives us uniform
convergence as well.

Converges to isometry: What remains to be shown is that ink
converges to an isometry. Consider arbitrary

p, q ∈M. We have shown that ink
(p)→ i(p) = p0 and ink

(q)→ i(q) = q0. We must show that d(p0, q0) = d(p, q).

We prove this by contradiction. Suppose for the sake of contradiction that

|d(i(p), i(q))− d(p, q)| = ε > 0. (0.26)

However, by triangle inequality:

d(i(p), i(q)) ≤ d(i(p), ink
(p)) + d(ink

(p), ink
(q)) + d(ink

(q), i(q)) = d(i(p), ink
(p)) + d(ink

(q), i(q)) + d(p, q),
(0.27)
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so
d(i(p), i(q))− d(p, q) ≤ d(i(p), ink

(p)) + d(ink
(q), i(q)). (0.28)

However, since ink
(p)→ i(p) and ink

(q)→ i(q), there exists some N such that k > N implies that d(i(p), ink
(p)) <

ε/2 and d(ink
(q), i(q)) < ε/2. So we have:

|d(i(p), i(q))− d(p, q)| < ε, (0.29)

contradicting the assumption that |d(i(p), i(q)) − d(p, q)| = ε. Therefore, the sequence of isometries converges to
an isometry.

(b) The space of self isometries is compact if any sequence of isometries has a convergent subsequence. We proved this
for arbitrary sequences of isometries in part (a), so this space must be compact.

(c) We prove this directly. Consider an arbitrary x ∈M. We wish to show that

i−1
n1

(x), . . . , i−1
n2

(x), . . . (0.30)

converges to i−1. To do so, for any ε > 0, we want to show there exists K ∈ N such that k > K implies that
d(i−1

nk
(x), i−1(x)) < ε. But by the definition of isometries, we have

d(i−1
nk

(x), i−1x) = d(x, ink
(i−1(x))) = d(i(i−1x), ink

(i−1x)) = d(i(p), ink
(p)), (0.31)

where p = i−1x. But because ink
uniformly converges to i, there exists K ∈ N such that for all points p ∈ M we

have that d(i(p), ink
(p)) < ε. Therefore, if we pick this same K value for all choices of x, we have

d(i−1
nk

(x), i−1x) < ε, (0.32)

as desired.

(d) See part (e)

(e) Yes, they are compact. The group of m×m orthogonal matrices is isomorphic to O(m), which defines isometries of
Rm that fixes the origin. It is a standard linear algebra exercise to show that this corresponds to isometries on the
unit m− 1 sphere. This is a compact space, and we’ve shown that the space of self-isometries on compact spaces
is compact, so O(m) is compact.
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4. (a) Consider the function

f(x, y) =
{

0 if x = y = 0
xyyx else.

(0.33)

This is symmetric in x and y, so we just need to check that for each fixed y = y0 the function g : x 7→ f(x, y) is a
continuous function in x. We have two cases:

• Case 1: y0 6= 0. In this case, we have

g(x) =
{

0 if x = 0
xy0yx

0 else.
(0.34)

This is continuous at x > 0 because xy0 and yx
0 are both continuous, so their product is continuous. It is also

continuous at x = 0 because lim
x→0+

xy0yx
0 = 0.

• Case 2: y0 = 0. In this case, we have:

g(x) =
{

0 if x = 0
x00x else.

(0.35)

Note that x00x = 0 for all x 6= 0, so g(x) = 0 everywhere, and it is continuous.

Now, we just need to show that f is not continuous, specifically at (0, 0). Consider restricting the function to the
set S = {(t, t) ∈ R2 : t ∈ [0, 1]}. Let this restriction be h. We then have

h(t) =
{

0 t = 0
(tt)2 t 6= 0.

(0.36)

However, this is not continuous at t = 0 since lim
t→0+

(tt)2 = 1 6= 0. Since a restriction of the function on the domain
[0, 1]× [0, 1] is not continuous, then the function is not continuous.

(b) Consider a sequence (xn, yn) that converges in [0, 1] × [0, 1]. We wish to show that (f(xn, yn)) also converges,
which would imply that f is continuous.

Let (xn, yn) converge to (x0, y0). Then for all δ > 0, there exists N ∈ N such that n > N =⇒ |x0 − xn| <
δ, |y0 − yn| < δ.

Let g(y) = f(x0, y). Because g(y) is continuous, for every ε > 0, there exists δ > 0 such that |y0 − yn| < δ =⇒
|g(y0)− g(yn)| < ε

2 =⇒ |f(x0, y0)− g(x0, yn)| < ε

2 .

Let hy(x) = f(x, y) be the restriction of f to a certain y value. Because these are equicontinuous for each y, we
have that |x0 − xn| < δ =⇒ |hyn

(x0)− hyn
(xn)| < ε =⇒ |f(x0, yn)− f(xn, yn)| < ε.

We can now put everything together. Consider an arbitrary δ > 0, and pick the corresponding N ∈ N such that
both |x0− xn| < δ and |y0− yn| < δ is satisfied for all n > N. Then by the triangle inequality, and using the above
results, we have:

|f(x0, y0)− f(xn, yn)| ≤ |f(x0, y0)− f(x0, yn)|+ |f(x0, yn)− f(xn, yn)| (0.37)

<
ε

2 + ε

2 = ε, (0.38)

where the last line follows from continuity of g(y) and equicontinuity of hy(x).

5



5. Let
Pn(x) = a10,nx

10 + a9,nx
9 + · · ·+ a0,nx

0. (0.39)

Note that each coefficient (ai,n) forms a bounded sequence since Pn(x) converges to 0 on [0, 1], so they must be bounded.
Because the coefficients are all bounded, we must have that Pn(x) is uniformly bounded on [0, 1] and so are the derivatives.
Because they are uniformly bounded on a compact set, they are equicontinuous, so we get uniform convergence of Pn(x)
and its derivatives.

We just need to prove that (ai,n) forms a bounded sequence.

Lemma 3: (ai,n) forms a bounded sequence.

Proof. These 11 coefficients are uniquely determined by 11 points of Pn(x). Pick 11 arbitrary points in [0, 1].
Because it converges point-wise at these 11 points, then these coefficients cannot grow without bound.

Note: I couldn’t quite finish the proof here, but it makes sense that if any of the coefficients were to grow
unbounded, then Pn(x) cannot converge. An alternative way to prove this is to map this to a problem in R11 and
match the coefficients to coordinates and in Rn a point converges to 0 if all the components converge to 0

By extension, all higher derivatives will be uniformly continuous on [0, 1].We can apply this to the problem, where d = 10.
Suppose

Pn(x) = a10,nx
10 + a9,nx

9 + · · ·+ a0,nx
0. (0.40)

We can show that all the coefficients approach zero, i.e. ak,n → 0. To do this, the kth derivative is

Gk,n(x) = dk

dxk
Pn(x) = c10,ka10,nx

10−k + c9,ka9,nx
9−k + · · ·+ ck,kak,n, (0.41)

where ci,k = i(i − 1) · · · (i − k + 1) come from repeated applications of the power rule. But from the lemma, we know
that Gk,n(x) uniformly approaches 0 on [0, 1], so Gk,n(0)→ 0. But Gk,n(0) = ck,kak,n, and since ck,k > 0 is a constant
that doesn’t depend on n, we have that ak,n → 0.

We have shown that all the coefficients approach 0. We will now use this to show that Pn(x) uniformly converges to 0
on the interval [4, 5] as well. Because ai,n → 0, we have that for all ε > 0, there exists N ∈ N such that n > N implies
that |ai,n| <

ε

11 · 510 .

Let 4 ≤ x ≤ 5. By triangle inequality, we have:

|Pn(x)| = |a10,nx
10 + a9,nx

9 + · · ·+ a0,nx
0| (0.42)

≤ |a10,n||x10|+ |a9,n||x9|+ · · ·+ |a0,n||x0| (0.43)
≤ |a10,n|510 + |a9,n|510 + · · ·+ |a0,n|510 (0.44)

<
ε

11 + · · ·+ ε

11 = ε. (0.45)

For every ε > 0, there exists N ∈ N such that n > N implies that |Pn(x) − 0| < ε, so the sup-norm approaches 0 and
Pn(x)→ 0 uniformly on [4, 5].
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