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1. (a) Consider M = [0, 1] and f : M → M given by f(x) = 1
1 + x

. We can show that this is a weak contraction since
for all x, y ∈M with x 6= y, we have ∣∣∣∣ 1

1 + y
− 1

1 + x

∣∣∣∣ =
∣∣∣∣ x− y
(1 + x)(1 + y)

∣∣∣∣ (0.1)

< |x− y|. (0.2)

The inequality is strict because the only time when (1 + x)(1 + y) = 1 is when x = y = 0, in which case we don’t
have x 6= y. However, this is not a contraction. For any k such that 0 < k < 1, we can find x, y ∈ M such that
d(fx, fy) = kd(x, y). WLOG, let y < x. Then:

d(fx, fy)− kd(x, y) = 1
1 + y

− 1
1 + x

− k(x− y) (0.3)

= (x− y)
(

1
(1 + x)(1 + y) − k

)
. (0.4)

We can choose y = 0 and x = 1
k
− 1 for this to be zero. Note that for any 0 < k < 1, we have x, y ∈ M and

x 6= y. Therefore,
d(fx, fy) = kd(x, y) (0.5)

for some x, y ∈M with x 6= y, so it is not a contraction.

(b) The above example worked it out for a compact space [0, 1].

(c) Because f is a weak contraction, it is Lipschitz continuous, so it is continuous. A point x is a fixed point of f if
d(x, f(x)) = 0. Recall that d : M2 → R is a continuous function, so

g : M → R, g(x) = d(x, f(x)) (0.6)

is a composition of continuous function, so g is continuous. Because it is a continuous function defined on a
compact metric space, it is bounded and the extreme value theorem applies: there exists some point y such that
g(y) = infx∈M{g(x)}.

We claim that g(y) = 0, i.e. y is a fixed point. Suppose it is not. Then consider

g(f(y)) = d(f(y), f(f(y))) < d(y, f(y)) = g(y), (0.7)

where the inequality is due to the fact that f is a weak contraction. This contradicts that g(y) is the minimum of
g(x) over all x ∈M. Therefore, y is a fixed point.

To show the uniqueness of a fixed point is easy. Suppose there were two fixed points y1, y2 ∈ M. Then by weak
contraction, we want

d(f(y1), f(y2)) < d(y1, y2). (0.8)

But this is impossible since d(f(y1), f(y2)) = d(y1, y2). Therefore, there is only one fixed point.
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2. (a) Let us define

f(x) =

x+ 1
x

x ≤ −1
−2 x > −1.

(0.9)

It is easy to check that function f is continuous at x = −1. The derivative is

f ′(x) =

1− 1
x2 x ≤ −1

0 x > −1.
(0.10)

It’s also easy to verify that |f ′(x)| < 1. Finally, also notice that f(x) = x has no solutions. For x < −1, we can’t
have x+ 1

x
= x. For x > −1, we have f(x) > −2. Therefore, there are no fixed points, so f is not a contraction.

(b) Yes, it is a weak contraction. Suppose for the sake of contradiction that it is not weak. That is, there exists a, b ∈ R
where b > a such that

f(b)− f(a)
b− a

= M. (0.11)

where |M | ≥ 1. By the mean value theorem, there exists some c ∈ R with a < c < b such that f ′(c) = M. But
since |M | ≥ 1 we have |f ′(c)| ≥ 1, contradicting the assumption that |f ′(x)| < 1 for all x ∈ R.

(c) See part (a). We found a function f that satisfies the preconditions but is not a contraction.
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3. (a) Limiting case of part (b), where C = 0 and M = K.

(b) If |f(x)| ≤ C|x|+K for all x, then
|x′(t)| ≤ C|x|+K (0.12)

for all x. We first show that x(t) is bounded above for finite time, and by the same argument (or by symmetry), we
can show that x(t) is bounded below.

Suppose for the sake of contradiction that the solution diverges to positive infinity in finite time. Therefore, WLOG,
we can let x > 0 in our time of interest. This is equivalent to

x′(t) ≤ Cx+K ⇐⇒ x′(t)− Cx ≤ K (0.13)
⇐⇒ e−Ctx′(t)− Ce−Ctx ≤ Ke−Ct (0.14)

⇐⇒ d

dt
(e−Ctx) ≤ Ke−Ct. (0.15)

Integrating over some bounded interval 0 ≤ t ≤ T, we have

e−CTx(T )− x(0) ≤
∫ T

0
Ke−Ct dt . (0.16)

If C = 0, then
x(T )− x(0) ≤ KT =⇒ x(T ) ≤ x(0) +KT. (0.17)

If C > 0, then

e−CTx(T )− x(0) ≤ K

C

(
e−CT − 1

)
=⇒ x(T ) ≤

(
x(0) + K

C

)
eCT − K

C
. (0.18)

which is bounded above. Since T ∈ R+ is arbitrary, we have shown that x(t) does not diverge in finite t.

Note: There is actually one case we have not considered here. Perhaps it is possible for a solution to diverge in
finite time, yet not diverge to either positive or negative infinity. Instead, it oscillates, i.e.

x(t) = sin(1/(t− T ))
t− T

. (0.19)

We will show that this behavior which we neglected, cannot actually exist! This is because this solution would satisfy
x(t) = 0 at infinitely many times ti in a bounded interval. However, when x = 0 we have

|x′(ti)| ≤ K (0.20)
so for any ε > 0, there exists δ > 0 such that for all i we have |t − ti| < δ implies |x′(t) −K| < ε. If we choose
ε = K, we have |t− ti| < δ implies

− 2K < x′(t) < 2K =⇒ |x(t)| < 2Kδ. (0.21)
But the intersection points ti get arbitrarily close together (i.e. closer than δ), so by the above x(t) must be bounded
by a constant 2Kδ when this occurs, contradicting the fact that x(t) diverges.

(c) Not assigned.

(d) We just need to show that f(x) being uniformly continuous implies that there are constants C,K such that
|f(x)| ≤ C|x|+K. Intuitively, this is true since uniform continuity states that in a δ-interval, the function can only
change by so much. We prove this rigorously below.

Fix any ε > 0. Then there exists δ > 0 such that |x− y| < δ =⇒ |f(x)− f(y)| < ε. Choose C = ε/δ.

For each x ∈ R, choose N = dsx/δe where s ∈ {+1,−1} is the sign of x. Then by triangle inequality:
|f(x)− f(0)| ≤ |f(0)− f(sδ)|+ |f(sδ)− f(2sδ)|+ · · ·+ |f(s(N − 1)δ)− f(x)| < Nε, (0.22)

where the last inequality comes from applying the δ − ε definition to each term. Note that
Nε < (|x|/δ + 1)ε = C|x|+ ε. (0.23)

We have |f(x)− f(0)| < C|x|+ ε, which we can rewrite as
f(0)− C|x| − ε < f(x) < f(0) + C|x|+ ε. (0.24)

There exists K > 0 such that K > |f(0)|+ ε. Then the above inequality implies that
−K − C|x| < f(x) < K + C|x| =⇒ |f(x)| < K + C|x|, (0.25)

which is a stronger version of the desired inequality.
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4. (a) Let µ denote the measure defined using open intervals and µ′ denote the measure defined using closed intervals.
We wish to show that given any set X ∈ R we have µ(X) = µ′(X). First note that |(a, b)| = |[a, b]| = b− a, so the
length of an open interval and a closed interval with the same boundary is the same.

Note that µ(X) ≥ µ′(X) is easy to show since if we have an open interval covering of X, we can take the closure of
each interval to get a closed interval covering of X. The length of the covering remains unchanged. Therefore, the
infimum of the length of a closed interval covering is at most the infimum of the length of an open interval covering.

To show that µ′(X) ≥ µ(X), we consider a closed interval covering of X with length L. We can then construct an
open interval covering of X with length L + ε for any ε > 0. To do so, consider an arbitrary closed covering and
construct an open covering, ⋃

i=1
[ai, bi] ⊂

⋃
i=1

(ai − ε/2i+1, ai + ε/2i+1), (0.26)

where the total length is ∑
i=1

(ai − ε/2i+1, ai + ε/2i+1) =
∑
i=1

[ai, bi] + ε
∑
i=1

1
2i = L+ ε. (0.27)

Thus, every closed covering can be covered by an open covering with marginally larger length. Therefore, the
infimum of the length of an open interval covering is at most the infimum of the length of a closed interval covering.

(b) We can write

C =
∞⋂
i

Ck (0.28)

where Ck is a closed set with measure (2/3)k. We have C ⊆ Ck for all k so

µ(C) ≤ µ(Ck) (0.29)

for all k. But µ(Ck) = (2/3)k can be arbitrarily small, so µ(Ck) = 0 =⇒ µ(C) = 0.

(c) Let µ denote the measure defined using open intervals, µ′ denote the measure defined using closed intervals, and
µ′′ denote the measure defined using closed and open intervals.

Showing µ′′(X) ≥ µ′(X) is easy, and in fact it follows the exact same steps as showing µ(X) ≥ µ′(X). We can
take any covering (using closed and/or intervals), take the closure of these intervals, and the length of the covering
remains unchanged.

Showing µ′′(X) ≥ µ(X) is also easy, and follows the exact same steps as showing µ′(X) ≥ µ(X). Consider any
covering with length L consisted of closed and/or open intervals, and we can construct an open covering where the
total length is L+ ε for any ε > 0 using the same method as in part (a).

However, µ′(X) = µ(X), so we really have µ(X) ≤ µ′′(X) ≤ µ(X). Therefore, µ(X) = µ′′(X).

(d) Let µ denote the measure defined using rectangles and µ′ denote the measure using squares. We wish to show that
µ(X) = µ′(X) for any X ⊆∈ R2.

First note that µ(X) ≤ µ′(X) is easy to show since every square-covering is a rectangle-covering.

We wish to show that µ′(X) ≤ µ(X). For each rectangle, we wish to cover it with a finite number of squares1 such
that the difference in areas can be bounded by ε for any ε > 0. Suppose this was possible (we will prove it later).
Then: ⋃

i=1
[ai, bi]× [ci, di] ⊂

⋃
i=1

 ni⋃
j=1

[xj , xj + Lj ]× [yj , yj + Lj ]

 (0.30)

where the total area is

∑
i=1

nj∑
j=1

L2
j =

∑
i=1

(bi − ai)(ci − di) +
∑
i=1

ε/2i+1 (0.31)

=
∑
i=1

(bi − ai)(ci − di) + ε. (0.32)

1Technically it could be a countable number of squares, but then the proof would require accepting the axiom of choice.
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Now, it just remains to show that we can cover any rectangle with a finite number of squares such that the difference
in areas can be bounded by ε. To do so, WLOG, let R = [0, a]× [0, b] and cover it with squares of side length ε

2n ,
i.e.

R ⊂
ceil(a2n/ε)⋃

i=1

ceil(b2n/ε)⋃
j=1

[xi, xi + ε

2n ]× [yj , yj + ε

2n ] (0.33)

where x1 = y1 = 0. The difference in area is bounded by ε

2n (a + b). As n increases, the difference in area can be
made arbitrarily small, and we’re done.
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5. (a) See part (b)

(b) We first solve an easier problem. Let S ∼= Rk be a hyperplane in Rn with k < n such that:

• S passes through the origin

• Any v ∈ S is parallel to one of the coordinate axes.

Then S is measure zero in Rn. A direct consequence is that any v ∈ S will be orthogonal to one of the coordinate
axes, which WLOG we will assume is x1. Then consider the covering

∞⋃
i=1

Ui (0.34)

where
Ui = [−ε/2i+1,+ε/2i+1]× [−i/2, i/2]× · · · × [−i/2, i/2] (0.35)

which has volume
vol(Ui) = ε

2i · i
n−1. (0.36)

First note that this is a valid covering. Any point (0, x2, . . . , xn) will be covered by U2·ceil(max{|x2|,...,|xn|}). Now, we
wish to show that the total volume is bounded by ε. We have,

∞∑
i=1

vol(Ui) = εin−1

2i = Mε (0.37)

for some constantM > 0. This infinite series converges by the comparison test (standard first-year calculus exercise).
Therefore, we can make the volume of the covering arbitrary small by changing ε.

Now we will show that any hyperplane S′ ∼= Rk that passes through the origin (with axes not necessarily parallel to
coordinate axes) is measure 0. To do this, note that we can write

S′ = L(S) (0.38)

where S is the hyperplane we originally described, and L ∈ SO(n) is a linear transformation. Note that det(L) = 1.

Therefore, if
∞⋃
i=1

Ui is a cover for S then

L

( ∞⋃
i=1

Ui

)
⊃ S′ (0.39)

is a cover for S′ with the same volume (since det(L) = 1). Therefore, if the measure defined by rotated prisms is
equivalent to the measure defined by non-rotated prisms, then S′ will have measure 0.

The proof for this is a bit ugly, but very similar to question 4, and I believe it is something we covered in MAT257
when defining integration on Rn through defining partitions and taking refinements of these partitions until the error
becomes arbitrarily small. This allows us to cover any connected open set with finitely many prisms such that the
difference in volumes is bounded by ε.

Finally, we need to show that an arbitrary hyperplane S′′ is measure 0. To do this, note that we can perform a
constant shift such that this hyperplane intersects the origin and becomes S′. We proved that S′ is measure 0, so
we can take a cover for S′ and shift it by the same constant to get a cover for S′′ such that the cover has the same
volume. Therefore, S′′ is measure 0.

6


