
PHY365: Quantum Information
Part 2 (Lecture 10 and Beyond)

QiLin Xue

Winter 2022

Contents
1 Quantum Teleportation 2

2 No-Cloning Theorem 4

3 Quantum Algorithms 4
3.1 Deutsch Algorithm . 4
3.2 Deutsch-Josza Algorithm . 5
3.3 Berstein-Vazirani . 5
3.4 Quantum Fourier Transform . 6
3.5 Period Finding with a Quantum Computer . 8

1

1 QUANTUM TELEPORTATION

1 Quantum Teleportation
Quantum teleportation is the transfer of the quantum state of one qubit to another (not the actual physical qubit) using a
shared entangled resource and two classical bits of information. It is performed using the following circuit.

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉 |Ψout〉

A: H

B: H

C: X Z

1. The input is
|ψ1〉 = α |000〉+ β |100〉 (1.1)

2. We create the entangled resource between B and C

|Ψ1〉 → |Ψin〉
1√
2

(|00〉+ |10〉)→ |Ψout〉
1√
2

(|00〉+ |11〉) (1.2)

which is
|Ψ2〉 = 1√

2
(α |000〉+ α |011〉+ β |100〉+ |111〉) (1.3)

3. Bell state detection:

|Ψ3〉 = CNOTAB ⊗ IC |Ψ2〉 = 1√
2

(α |000〉+ α |011〉+ β|110〉+ β |101〉) (1.4)

and

|Ψ4〉 = (ĤA ⊗ I ⊗ I) |Ψ3〉 = 1
2 (α |000〉+ α |100〉+ α |011〉+ α |111〉+ β |010〉 − β |110〉+ β |001〉 − β |101〉) . (1.5)

We can clean this up a bit into:

|Ψ4〉 = 1
2 (α{|000〉+ |100〉+ |011〉+ |111〉}+ β{|010〉 − |110〉+ |001〉 − |101〉}) (1.6)

= 1
2 (|00〉 {α |0〉+ β |1〉}+ |01〉 {α |1〉+ β |0〉}+ |10〉 {α |0〉 − β |1〉}+ |11〉 {α |1〉 − β|0〉}) (1.7)

= 1
2

(
|00〉 Î |Ψin〉+ |01〉 X̂ |ψin〉+ |10〉 Ẑ |ψin〉+ |11〉 X̂Ẑ |ψin〉

)
(1.8)

4. Sending classical bits: The target qubit is now in a linear combination of several states, depending on what the first two
qubits are. Once the first two qubits are measured, and results are sent, then C can take the inverse to retrieve |ψin〉 .
After measurement, the state is:

|Ψproj〉c = X̂bẐa |Ψin〉 (1.9)

To reconstruct it, we can apply:
|Ψout〉 = ẐaX̂b |Ψproj〉c = |Ψin〉 (1.10)

Let us now attempt to analyze this using a circuit-based approach. To do so, we need to use the Griffiths-Niu Theorem.

Theorem: The following circuits, according to the Griffiths-Niu Theorem, are equivalent:

U

=

U

Using this theorem, we can redraw our circuit as:

2

1 QUANTUM TELEPORTATION

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A: H Z

B: H

C:

Recall that for a control-Z, it doesn’t matter which one is the control and which one is the target. Using the identity Z = HXH,
we can reduce it further:

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A: H H H

B: H

C:

Since H2 = I, we can simplify the top part. Furthermore, we can introduce another CNOT between the first and the second
branch.

|Ψin〉 = α |0〉+ β |1〉 a

|0〉 b

|0〉

A:

B: H

C:

We were allowed to introduce this CNOT gate since XH |0〉 = H |0〉 . This actually makes it easier since the following two
circuits are also equivalent:

=

This can be proved by looking at how it maps the basis elements. Using this substitution, we end up with:

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: H

B: H

C:

We can now introduce another CNOT gate, which doesn’t do anything since C will always be |0〉.

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: H

B: H

C:

Three alternating CNOT gates is equivalent to the SWAP gate, so we can write:

|Ψin〉 = α |0〉+ β |1〉

|0〉

|0〉

A: H

B: H

C:

3

3 QUANTUM ALGORITHMS

2 No-Cloning Theorem
It is impossible to clone a qubit. If this was possible, we can make an amplifier A that can effectively “measure” a qubit,
allowing faster than light communication to happen. Here is how an amplifier actually works. An amplifier can act on single
bits:

A |0〉 = |00〉
A |1〉 = |11〉

If it acts on a linear combination, it gives:

A

(
|0〉+ |1〉

2

)
= 1√

2
(|00〉+ |11〉), (2.1)

which is en entangled pair, and not the tensor product between two of these linear combinations.

3 Quantum Algorithms
NB: There’s a course on this! CSC2332

3.1 Deutsch Algorithm
Consider a function f(x) that takes a bit as an input and a bit as an output. Note that there are only four possible functions.
Some of them are constant (all outputs are the same), and some are balanced (equal number of 1s and 0s as outputs). How
can we determine if f(x) is balanced, using only one evaluation?

To do this quantumly, we need a unitary operation to evaluate f(x). However, we can’t evaluate it directly via |x〉 → |f(x)〉
since if f(x) is constant, then it is non-unitary. Instead, we examine the map:

|x, 0〉 → |x, f(x)〉

|x, 1〉 →
∣∣∣x, f(x)

〉
Let’s see if this works! Recall that there are only four possible functions f(x). Let’s look at them each:

(a) f(0) = 0, f(1) = 0

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |10〉
|11〉 → |11〉

Then:
Û = Î ⊗ Î

(b) f(0) = 0, f(1) = 1

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

Then
Û = CNOT

(c) f(0) = 1, f(1) = 0 We have:
Û = CNOT (Î ⊗ X̂)

(d) f(0) = 1, f(1) = 1
Û = Î ⊗ X̂

4

3.2 Deutsch-Josza Algorithm 3 QUANTUM ALGORITHMS

To accomplish this, we will apply the following circuit:

|0〉

|0〉

H

U

H

X H

The input to the unitary gate U is
|Ψin〉 = 1

2(|0〉+ |1〉)(|0〉 − |1〉).

Then after the unitary gate, we have:

Uf |x〉
(
|0〉 − |1〉√

2

)
= |x〉

 |f(x)〉 −
∣∣∣f(x)

〉
√

2


= (−1)f(x) |x〉

(
|0〉 − |1〉√

2

)
= 1

2

(
(−1)f(x) |0〉+ (−1)f(x) |1〉

)
(|0〉 − |1〉)

where |x〉 = |0〉+ |1〉√
2

. Then working through each of the four cases, we can see that this circuit can determine if the circuit
is balanced or not.

After measurement, if qubit 1 is 0, then it’s constant. Otherwise, it’s balanced.

3.2 Deutsch-Josza Algorithm
Let us attempt to make the previous result more powerful. Suppose x ∈ {0, 1, . . . , 2N − 1} is n-bits and f(x) ∈ 0, 1 is still a
1-bit function. Suppose that f(x) is either constant or balanced. To do so, the circuit is remarkably similar!

|0〉

|0〉

N
H⊗n

U

H⊗n

X H

Note that when you apply Ĥ⊗n, you get a superposition of all possible n qubit states. The overall idea is that each individual
bit will either contribute to a phase shift of (−1)x. Similar to before, the state after the unitary is

|Ψ〉 =
2N−1∑
x=0

(−1)f(x) |x〉√
2n

(
|0〉 − |1〉√

2

)
Note that:

Ĥ⊗n |x〉 = 1
2

2N−1∑
z=0

1√
2n

(−1)x·z |z〉 ,

where zi refers to the ith bit of x. The result is the same as before. If f is constant, the measurement will be 0. Otherwise, it
is 1.

3.3 Berstein-Vazirani
This is a restricted version of the previous problem. Suppose a, x are n-bit numbers with digits an−1an−2 . . . a1a0 and
xn−1xn−2 . . . x1x0. Suppose we have the function:

f(x) = a · x = a0x0 ⊕ a1x1 · · · ⊕ an−1xn−1

The question is: for how many different arguments x do we need to evaluate f(x) in order to find a?

Classically, you need n evaluations, by doing am = f(2m). It happens that we can just apply the same circuit as before, and
the measurements will give us a!

5

3.4 Quantum Fourier Transform 3 QUANTUM ALGORITHMS

3.4 Quantum Fourier Transform
Recall that the standard fourier transform turns a function x(t) from its time domain to its frequency domain, i.e.

x̃(ω) =
∫ ∞
−∞

x(t)e2πiνtdt

There are only a few functions where this can be computed analytically. When working with real data, we would typically have
a set {x0, x1, . . . , xN−1} where the data points are taken from a set of equally spaced time intervals x(T + `∆t). The discrete
fourier transform then gives a sequence

{x̃0, x̃1, . . . , x̃N−1}

where

x̃k = 1√
N

N−1∑
`=0

exp
(

2πik`
N

)
x`.

This is quite a resource heavy computation. There is a faster method to do this calculation, known as the Fast Fourier Transform
(FFT), which only works when N = 2n is a power of 2.

Let us now examine the Quantum Fourier Transform. Let |`1〉 be the most significant and |`n〉 be the least significant bit.

|`1〉

|`2〉

...
...

|`n〉

Let
|`〉 = |`1〉 ⊗ |`2〉 ⊗ · · · ⊗ |`n〉 , (3.1)

such that ` = (`1`2 . . . `n)2. Then the quantum fourier transform is given by the unitary operator ÛQFT defined by

ÛQFT |`〉 = 1√
2n

2n−1∑
k=0

exp
(

2πi · k`2n

)
|k.〉

In general, an n-qubit state is a linear combination of the basis |`〉 states, i.e.

ÛQFT |Ψ〉 = ÛQFT
∑
`

c` |`〉 (3.2)

=
∑
`k

c` exp
(

2πi k`2n

)
|k〉 (3.3)

=
∑
k

c̃k |k〉 , (3.4)

where c̃k is the DFT of {ck}.

We will now attempt this for the n = 2 case. Then:

ÛQFT |`〉 = 1
2

{
|00〉+ exp

(
2πi `4

)
|01〉+ exp

(
2πi2`4

)
|10〉+ exp

(
2πi3`4

)
|11〉

}
. (3.5)

The concurrence is

C = 2|αδ − βγ| = 0, (3.6)

so these are separable. Therefore, we can rewrite this as

ÛQFT |`〉 = 1
2

[
|0〉
{
|0〉+ exp

(
2πi `4

)
|1〉
}

+ |1〉
{
|0〉 exp

(
2πi2`4

)
+ exp

(
2πi3`4

)
|1〉
}]

(3.7)

= 1√
2

{
|0〉+ |1〉 exp

(
2πi2`4

)}
⊗ 1√

2

{
|0〉+ |1〉 exp

(
2πi `4

)}
. (3.8)

6

3.4 Quantum Fourier Transform 3 QUANTUM ALGORITHMS

Note that
2`
4 = 1

2 (2`1 + `2) = `1 + `2

2
`

4 = `1

2 + `2

4 .

We can ignore the `1 term since if `1 = 0 it does nothing and if `1 = 1 then e2πi = 1. Therefore:

ÛQFT |`〉 = 1√
2

{
|0〉+ |1〉 exp

(
2πi`2

2

)}
⊗ 1√

2

{
|0〉+ |1〉 exp

(
2πi

(
`1

2 + `2

4

))}
. (3.9)

Recall that
Ĥ |`k〉 = 1√

2
(
|0〉+ (−1)`k |1〉

)
. (3.10)

However, (−1)`k = exp
(

2πi`k2

)
, which looks suspiciously like what we had in our Quantum Fourier Transform. In particular,

Ĥ ⊗ Ĥ |`1`2〉 = 1√
2

{
|0〉+ |1〉 exp

(
2πi`1

2

)}
⊗ 1√

2

{
|0〉+ |1〉 exp

(
2πi`2

2

)}
. (3.11)

It seems like `1 and `2 is swapped, so we have to perform a SWAP operation. To get the second qubit to the right location,
we can perform a rotation that is controlled by the other qubit. In particular,

R̂0 = Î

R̂1 = Ẑ

R̂2 =
√
Ẑ

R̂k =

1 0

0 exp
(

2πi
2k

)
Therefore, the circuit looks like:

|`1〉

|`2〉

H R2

H

We will now try to generalize this result. We can write the k

2n part as:

k

2n =
n∑

m=1
km

2n−m

2n =
n∑

m=1

km
2m . (3.12)

This allows us to take the sum over the individual digits of k. That is,

ÛQFT |`〉 = 1√
2n

1∑
k1=0

1∑
k2=0
· · ·

1∑
kn=0

n⊗
m=1

exp
(

exp 2πi`km2m

)
|km〉 . (3.13)

Recall that the tensor product is distributive, i.e. (a + b) ⊗ (c + d) = a ⊗ c + a ⊗ d + b ⊗ c + b ⊗ d. Therefore, we can write
the above as a product of a sum:

=
n⊗

m=1

1√
2

{
|0〉m + exp

(
2πi `2m

)
|1〉m

}
. (3.14)

Recall that we can write ` = `12n−1 + · · ·+ `n−22 + `n. Then:

`

2m = `12n−(m+1) + `22n−(m+2) + · · ·+ `m−n︸ ︷︷ ︸+`m−n+1

2 + · · ·+ `1

2m . (3.15)

We can ignore the numbers in the underbrace since they are integers, so their exponent will just be 1. To process `m−n+1

2 , we
can use a Hadamard and a swap and for the other terms, we can use controlled phases. The circuit looks like the following:

7

3.5 Period Finding with a Quantum Computer 3 QUANTUM ALGORITHMS

|`1〉 . . .

|`2〉 . . .

...

|`n−1〉 . . .

|`n〉

H R2 Rn−1 Rn

H Rn−2 Rn−1

H R2

H

Complexity

Note that a single controlled Rk gate is consisted of 2 CNOTs and 3 single qubit gates. There are bn/2c swaps, which canb e

implemented with 3 CNOTS each. We apply Rk (n−1)+(n−2)+ · · ·+1 = n(n− 1)
2 times. Therefore, we apply (3n−2)n/2

single qubit operations and (2n+ 1)n/2 CNOTS.

As a result, the QFT is polynomial in n. For reference, the DFT is O(22n) and)(n2n).

This is one of the first real applications that show the power of quantum computing. While in theory QFT is much more
efficient, it is very difficult to implement this in practice.

Modification

To make it more applicable, we can use a modification of the QFT. For example, we don’t need to bother with the SWAP
gates. We’ll just do it after measurement! Using the identities:

• A controlled Rk gate can be flipped and still give the same thing.

• Measuring the top branch after a controlled operation is the same as measuring it before the operation (Griffiths-Niu
Theorem)

We can now redraw the diagram:

|`1〉

|`2〉 . . .

...

|`n−1〉 . . .

|`n〉 . . .

H

R H

Rn−1 Rn−2 H

Rn Rn−1 R2 H

3.5 Period Finding with a Quantum Computer
Suppose a function f(x) is periodic which takes in x ∈ {0, 2n− 1}. How do we find the period, given that there is some r such
that f(x+ r) = f(x)?

Classically, this problem is exponentially and runs in O(2n−1) time, often known as being intractible in computer science.

Suppose we can construct Ûf which evaluates f(x). Suppose that:

Ûf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 (3.16)

where |x〉 is n qubits and |y〉 is m qubits. Our circuit is given by:

8

3.5 Period Finding with a Quantum Computer 3 QUANTUM ALGORITHMS

(argument) |0〉

(function) |0〉

N

m

Ĥ⊗n

Uf

ÛQFT

where directly before Uf , we have:

|Ψ1〉 = 1√
2n

2n−1∑
x=0
|x〉 ⊗ |0〉 , (3.17)

and directly after Uf , we have:

|Ψ2〉 = 1√
2n

2n−1∑
x=0
|x〉 |f(x)〉

= 1√
2n

(
|0〉 |f(0)〉+ |1〉 |f(1)〉+ · · ·+ |r − 1〉 |f(r − 1)〉+

+ |r〉 |f(0)〉+ |r + 1〉 |1〉+ · · ·+ |2n − 1〉 |f(x0)〉
)

= 1√
2n

(
m−1∑
k=0
|kr〉 |f(0)〉+ |kr + 1〉 |f(1)〉+ · · ·

)

where 2n = mr + x0. Now what is m? The naive answer is that:

m0 =
⌊

2n

r

⌋
(3.18)

is the largest integer smaller or equal to than 2n

r
. If r = 3, then x ∈ {0, 1, . . . , 7}. If we have m0 = 2, then:

• If x0 = 0, then kr + x0 can take on the values of |0〉 , |3〉 , |6〉 (m = 3)

• If x0 = 2 then we can take on the values of |2〉 , |5〉 (m = 2)

We see that there are two possibilities. In general,

• If x0 < 2n − rm0, then m(x0) = m0 + 1

• If x0 ≥ 2n − rm0, then m(x0) = m0

Therefore if we define:

|χ(x0)〉 = 1√
m(x0)

m(x0)−1∑
k=0

|kr + x0〉 (3.19)

then

|Ψ2〉 =
r−1∑
x0=0

√
m(x0)

2n |χ(x0)〉 |f(x0)〉 (3.20)

This gives us data (i.e. a graph) with values x0, x0 + r, x0 + 2r. To find the frequency, we can now take the Quantum Fourier
Transform:

|Ψ3〉 = (ÛQFT ⊗ Îm) |Ψ2〉 (3.21)

where

ÛQFT |χ(x0)〉 = ÛQFT

2n−1∑
j=0

cj |j〉 (3.22)

where

cj = 1√
m

m−1∑
x=0

δj,kr+x0 . (3.23)

9

3.5 Period Finding with a Quantum Computer 3 QUANTUM ALGORITHMS

Therefore,

ÛQFT |χ(x0)〉 = 1√
2n

2n−1∑
j,`=0

exp
(

2πi j`2n

)
1√
m

m−1∑
k=0

δj,kr+x0 |`〉 (3.24)

= 1√
2nm

2n−1∑
`=0

exp
(

2πi`x0

2n

)m−1∑
x=0

exp
(

2πi `r2n

)k
︸ ︷︷ ︸

γ

|`〉 (3.25)

where we can evaluate γ using a geometric series:

γ = 1− ei2mθ

1− ei2θ = ei(m−1)θ sin(mθ)
sin θ ' m

r∑
p=0

δ`,pm, (3.26)

where θ = π`r

2n , and we are allowed to make the approximation on the last step for large m. Then:

ÛQFT |χ(x0)〉 '
√
m

2n
2n−1∑
`=0

exp
(

2πi`x0

2n

) r−1∑
p=0

δ`,p 2n

r
|`〉 (3.27)

= 1√
r

r−1∑
p=0

exp
(

2πipx0

r

) ∣∣∣∣p2n

r

〉
. (3.28)

Therefore:

|Ψ3〉 '
1
r

r−1∑
x0=0

m−1∑
p=0

exp
(

2πipx0

r

) ∣∣∣∣p2n

r

〉
|f(x0)〉 . (3.29)

By Born’s rule, we know that once we make the measurement, we will either get 0, 2n

r
,

2n+1

r
, We can divide by 2n to get

0, 1
r
,

2
r
,

10

	Quantum Teleportation
	No-Cloning Theorem
	Quantum Algorithms
	Deutsch Algorithm
	Deutsch-Josza Algorithm
	Berstein-Vazirani
	Quantum Fourier Transform
	Period Finding with a Quantum Computer

