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I. INTRODUCTION

Modern cryptography make the fundamental assumption involving the hardness of certain mathematical problems.
Challenges related to factoring large numbers or resolving discrete logarithms serve as the basis for security in tradi-
tional cryptography - a foundation which, admittedly, has functioned well for many years. However, with the advent
of quantum computing and the potential for exponentially increased computational power, many of these classical
systems could be cracked. While research into post-quantum cryptography is being made, their security cannot be
proven.

Quantum cryptography works on principles that are fundamentally different from their classical counterparts.
One key aspect where they differ is that quantum cryptography uses the features of quantum systems, specifically
superposition, and the fact that these states cannot be cloned, protecting them against potential eavesdroppers.
Techniques such as the decoy state protocol are unique to quantum cryptography and promise to unlock a higher level
of safeguarding information. A basic method within this field is the use of the BB84 protocol with Einstein-Podolsky-
Rosen (EPR) pairs, which offers fundamentally secure encryption, as any attempt to intercept communication disturbs
the system and reveals the eavesdropper.

The strength of quantum cryptographic systems also rests on their ability to distribute EPR pairs across large
distances - a capability that becomes a technical challenge due to channel loss and noise that increases with distance.
This problem, for classical signals, is typically resolved using classical repeaters that amplify the signals to overcome
loss and degradation in the transmission medium. Yet, this approach fails when applied to quantum signals due
to the no cloning theorem that prevents the replication of quantum states, making the traditional signal-boosting
methodology impossible for quantum information transmission.

FIG. 1: A schematic of the quantum repeater with 8 repeater stations. The dashed blue lines show entangled pairs.
When a bell state measurement (BSM) are done, shown in orange, entanglement swapping occurs.

This is where quantum repeaters come into play. Quantum repeaters, unlike their classical counterparts, do not
amplify the quantum signal, but instead, creates long-distance entanglement linking distant nodes through a process
known as entanglement swapping, as shown in figure 1. Repeater stations are distributed between Alice and Bob
(labeled A and B) and entanglement is created between adjacent repeater stations. When a BSM is performed
between adjacent repeater stations that aren’t entangled together, the two qubits at these stations collapse into its
basis states, but the two other qubits they were entangled to, are now entangled to each other. This process is known
as entanglement swapping[1].

A. Motivation

The standard repeater protocol is impractical for two major reasons. First, it requires a quantum memory, as each
repeater node needs to wait for nearby nodes to be finished before performing the bell state measurements. Second, it
requires the ability to convert between stationary qubits (where one can apply quantum operations) and flying qubits
(where one can send from one physical location to another). This is because the stationary qubits at the nodes need
to be sent to the same location in order to perform the BSMs.

While there are suggestions for how to create a quantum memory, such as in the DLCZ protocol[1], the second
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problem is very hard. In fact, it is listed as part of DiVencenzo’s two extra conditions for a quantum computer[2].
Therefore, building a successful quantum repeater may be just as hard as building a quantum computer.

Luckily, there are methods to get around this by modifying the repeater architecture using photonics to avoid
the problems associated with quantum memory. Similar techniques are also employed in photonics-based quantum
computing.

II. ALL-PHOTONICS QUANTUM REPEATER

A. Brief Overview

The all photonics quantum repeater makes several improvements from the basic quantum repeater. First, it makes
use of several channels for creating entanglement. Since creating these EPR pairs is probabilistic, using several
channels ensures a higher chance of success. Failure only occurs if the photon gets lost in all the channels. Error
correction techniques, which are discussed in detail later, are able to still guarantee successful entanglement even if
only one of the channels at each repeater station successfully receive a photon. Most importantly though, the method

FIG. 2: A schematic of the all-photonics quantum repeater. Each of the n repeater stations is labeled as Cs
i where

1 ≤ i ≤ n. These stations send entangled photons to the receiver stations Cr
i where 1 ≤ i ≤ n− 1 located between

adjacent repeater stations. In the above diagram, a total of m = 4 parallel channels are used in the final cluster[3][4]

of creating entangled pairs do not require memory at all. Borrowing inspiration from the time-reversed EPR protocol
(which ultimately leads to material-device-independent QKD), the intuition is that BSMs are performed by first
creating entanglement and then performing measurements. However, the same result can be achieved by first creating
all the necessary entanglements and then performing the basis measurements[3]. Figure 2 also shows a schematic of

what each repeater source station looks like. Two X measurements are done to two successful modes, and 2m− 2 Z
measurements are done to the rest. Z measurements have the effect of removing the node, so it acts as a clean up.

In between each of the n repeater nodes (receiver nodes) lie source nodes, as shown in figure 2. All of Alice, Bob,
and the n − 1 source nodes prepares EPR pairs and sends a photon from each pair to the nearest receiver nodes.
For Alice and Bob, they only send one photon from each pair and keep the other. The photons that they keep will
eventually be maximally entangled with each other[3].
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B. Constructing a Graph

A photonic cluster state is a graph G(V,E) that is prepared by initializing each vertex with a photon prepared in
the |+⟩ state and preparing the controlled edge operation of

|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ σZ (1)

For example, a fully connected clique of three nodes will become

1√
8
· (|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩+ |111⟩) (2)

7→ (|000⟩+ |001⟩+ |010⟩ − |011⟩+ |100⟩+ |101⟩+ |110⟩ − |111⟩) qubit 2-3 (3)

7→ (|000⟩+ |001⟩+ |010⟩ − |011⟩+ |100⟩ − |101⟩+ |110⟩+ |111⟩) qubit 1-3 (4)

7→ (|000⟩+ |001⟩+ |010⟩ − |011⟩+ |100⟩ − |101⟩ − |110⟩ − |111⟩) qubit 1-2 (5)

where the most significant bit is marked as qubit 1. The advantage of this process is that the state is invariant under
the operator

Oi = Xi

∏
j∈N (i)

Zj , (6)

where N (i) is the set of neighbours of qubit i. In the 3-qubit example, we can WLOG take i = 1 and compute,

(|000⟩+ |001⟩+ |010⟩ − |011⟩+ |100⟩ − |101⟩ − |110⟩ − |111⟩) (7)

7→ (|000⟩ − |001⟩ − |010⟩ − |011⟩+ |100⟩+ |101⟩+ |110⟩ − |111⟩) (8)

7→ (|100⟩ − |101⟩ − |110⟩ − |111⟩+ |000⟩+ |001⟩+ |010⟩ − |011⟩) , (9)

where we can verify is equal to the original state by simple term matching. This invariance property allows indirect
measurement. If any node n ∈ N (i) was lost, we can still infer the result of Zn by performing the operation
Xi

∏
j∈N (i),j ̸=n Zj . This gives a lot of potential for error correction by creating several correlations between qubits.[5]

In fact, it can be shown that these are two equivalent definitions. That is, any graph G = (V,E) that satisfies

Oi |G⟩ = |G⟩ ,∀i ∈ V (10)

can be prepared in the method described above.

C. Photonic Tree

One major challenge of an all photonics quantum repeater is to construct these trees. Specifically, to protect
against loss via error correction, we wish to construct figure 3[4] where the attached tree has a branching vector of

b⃗ = [b0, b1, . . . , bd]. Here, d is the depth of the tree. It turns out that the optimal depth is d = 2, as depicted in figure
3. After this is set up, X-measurements are done on the 2m qubits surrounding the central qubit and the 2m qubits
that form the head of the error correcting trees. Finally, a Y -measurement is done on the central qubit, turning the
graph into a cluster state[4]. The specific setup of how this can be done is discussed in [6].

This report will discuss and analyze two different ways of constructing such a graph. One using a naive method
and one using an improved version.

D. Building a Cluster State

The general idea is to create the needed GHZ states, and combine them to create intermediate states. The states
are combined using Fusion II gates which removes two photons in the process[6]. That is, combining two states of x
photons will result in a state with 2x − 2 photons. That is, if N(ℓ) is the number of photons in each cluster tree at
the feed-forward stage ℓ, then it satisfies the recursive relationship

N(ℓ) = 2N(ℓ− 1)− 2. (11)
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FIG. 3: The quantum tree that needs to be constructed at each repeater node. It consists of a central node in the
middle connected to 2m nodes. Each of these nodes are connected to a tree T and an outer node (which is the qubit

that is transmitted between stations). The tree depicted in this figure has a branching vector of b⃗ = [2, 3] and a
depth of d = 2.

Using the initial condition of N(0) = 3, we obtain the maximum possible number of photons in the final stage, after
k feed-forward steps, as

N(k) = 2k + 2, (12)

which can be verified via induction. Note that this is the maximum number because additional measurements can be
done in the Z-basis which will destroy photons. If a b⃗ = [b0, b1] tree is attached to the central cluster, then the total
number of photons is given by

2m(b0b1 + b0 + 1) + (1 + 4m) (13)

where b0b1 + b0 +1 is the number of photons on each tree and 1+ 4m is the number of photons in the central cluster.
This gives us a restriction relating b0, b1,m, k together,

2k + 2 ≥ 2m(b0b1 + b0 + 1) + (1 + 4m). (14)

E. Basic Mechanisms

The fundamental building block of creating these cluster states is with Greenberger-Horne-Zeilinger (GHZ) states,
is typically given by the maximally entangled state[6],

represented by the graph G(V = 3, E = 2), i.e. a linear chain of three qubits. The probability of successfully
generating a GHZ state is[4]

PGHZ =
1

32

[
ηsηd(2− ηsηd)

3
]3

(15)

where ηsηd characterizes the efficiency of the source detector, and should be close to unity. The transmittance of
these GHZ states are is given by

ηGHZ =
ηsηd

2− ηsηd
. (16)

The probability that the photons survive on the chip in a given clock cycle is given by

Pchip = e−βτscch (17)

where cch is the speed of light on the chip, τs is the feed-forward time on the chip, and β is the on-chip loss
coefficient. These parameters can be picked such that the probability the phootn survives in the fiber in one clock
cycle, Pchip = e−ατf cf , is the same. Here, α is another loss coefficient and τf , cf are the feed-forward time and speed
of light in the fiber, respectively.
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III. NAIVE APPROACH

A. Probability Computation

The general idea is to create the needed GHZ states, and combine them to create intermediate states. The states
are combined using Fusion II gates which removes two photons in the process[6]. That is, combining two states of m
photons will result in a state with 2m− 2 photons.

However, because creating GHZ states and performing fusion operations are probabilistic, we may need to attempt
these operations with multiple copies at each stage. That is, if nGHZ GHZ states are attempted, the probability that
at least one of them is successful is given by

P0 = 1− (1− PGHZ)
nGHZ

where 1 − PGHZ is the probability that creating a GHZ state fails, so (1 − PGHZ)
nGHZ is the probability that all the

GHZ state creation attempts fails. The probability of fusion being successful is given by

Qℓ =
1

2
· (ηGHZP

ℓ
chip)

2 (18)

where 1
2 is the probability under ideal circumstances, and P ℓ

chip is the probability a photon survives on the chip
through ℓ feed-forward steps. Because we need two photons at this stage, this is squared. The probability of creating
the cluster Cℓ

i is given by the recursive formula

Pℓ = 1− (1− P 2
ℓ−1Qℓ)

nB , (19)

where nB is the number of attempts to create that cluster. For each attempt, the success probability is given by
P 2
ℓ−1Qℓ because we need both previous cluster states to be available, and the fusion needs to be successful.

In the final stage, a total of 4m+1 measurements are made, and the probability of those measurements succeeding
is given by

P ′ = (ηGHZP
k+1
chip )

4m+1 (20)

since each photon needs to survive ℓ = k + 1 feed-forward cycles. Because these measurements are done on several
copies (specifically nmeas copies), the probability that at least one of them succeeds is given by

Pc1 = 1− (1− PkP
′)nmeas . (21)

Note that in the original paper, the probability was written as Pc1 = 1− (QkP
′)nmeas . This is a typo. Because there

are n repeater stations, the total probability of all of them succeeding is given by

Pcn = Pn
c1. (22)

B. Optimization

A total of 6nGHZ photons are needed to create the GHZ states. In each of the k stages, we need 2 ancillary photons
for each of the nB attempts. A total of nmeas clusters are attempted, so the total number of photon sources needed
at each repeater node is given by

Ns = 6nGHZnmeas · (2nB)
k

photons. Given a specific Ns, we can find the optimal probability Pcn by optimizing the three user parameters:
nB , nmeas, nGHZ. The probability computations are straightforward to do, so this can be done via a grid search. The
result of the optimization is shown in figure 4.

IV. IMPROVED APPROACH

The major drawback of the naive approach is that there is a lot of wasted clusters. For example, if there were three
successful intermediate clusters created, only one would go towards the next step. The other two would be wasted,
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FIG. 4: A plot of Pcn, the probability of successfully generating the cluster states in all n repeater stations. Typical
parameter values of k = 7,m = 4 were used. Note that the naive repeater uses almost 104 times more photon

sources than the improved repeater architecture.

even if it might be needed somewhere else. The improved approach addresses this problem by creating a bank of
intermediate cluster states, and fusion steps can choose between any of them.

Additionally, another major improvement was to move the 4m + 1 basis measurements to be much earlier on, as
switching the order of basis measurements and fusion II operations do not matter[4].

If we start off with Ns photons, then we’re attempting to create ⌊Ns/6⌋ GHZ states, each with a probability of PGHZ.
Since these probabilities are identical and independent, the distribution of GHZ states follow a binomial distribution,

B(x, ⌊Ns/6⌋, PGHZ) (23)

These GHZ states are distributed into 2k banks C0
i1,...,ik

. These banks are then paired up, and fusion II operations are

done to create the 2k−1 possible different C1
i1,...,ik−1

cluster states, which are then placed in their respective banks,
and this process is continued.

Mathematically, the total number of Cℓm states can be approximated by the recursive relation:

B(min(y1, y2), ⌊Ns/6⌋, PGHZ) (24)

where y1, y2 are the number of states in the bank for the previous two cluster states, which follows the same distribution.
This can be simulated with a Monte Carlo simulation.

Note however that even in the Monte Carlo simulation, there are a few simplifications. Since the 4m + 1 basis
measurements are done on the GHZ states before any fusion gates are applied, so the banks that contain them will
have fewer photons since measurements are also probabilistic. Therefore, the banks that will be measured should be
provided with 1/(PchipηGHZ) more GHZ states, to counteract this effect. However, because PchipηGHZ is near unity,
we can get the same results as the paper without making this adjustment.

V. RATE CALCULATIONS

The key rate, in terms of bits per mode, can be computed as[4]

R =
PcnPmeas

Nparallel
(25)

where Nparallel is the number of parallel fiber links between adjacent repeater noes. For the improved scheme, which is
what this section will cover, we have Nparallel = 2m. The reason it is per mode is because while increasing the number
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of parallel channels could seemingly increase the key rate without bound, a repeaterless architecture could also increase
its key rate with access to several channels, so this allows the key rate to be normalized. The value of Nparallel is
computed differently for the naive scheme, as well as other things, which will be discussed later. Additionally, Pmeas

FIG. 5: They key rate as a function of distance for n = 1, 10, 24, 56, 133, 314, where n = 1 has the fastest drop off
and n = 314 has the slowest drop off. Note that for each distance between Alice and Bob, there is a finite optimal

value of the number of repeater stations n, characterized by an envelope function.

is the probability that Alice and Bob, who are located at opposite ends of the quantum repeater system, are all able
to obtain a successful detection on at least one of the parallel channels. For each repeater station, a total of 2m− 2
Z-basis measurements are made, and a single X-basis measurement. These all need to be successful, and at least one
of the m Bell state measurements in the n− 1 sites between the repeater nodes also need to be successful, as well as
the measurements at the two ends. This gives

Pmeas = P
2(m−1)n
Z P 2n

X [1− (1− PB)
m]

n−1
P 2
end. (26)

Finally, note that Nparallel is the number of modes, which is why we divide it. To characterize PZ , PX , PB , Pend we
need to first determine the loss rate of qubits. They are different depending on whether they are outer qubits, where
their loss rate is

ϵtrav = 1− η1/(2n)P k+2
chip ηGHZηc

and the loss rate for inner qubits is given by

ϵstat = 1− η1/nPfibP
k+2
chip ηGHZηc.

Note that for outer qubits, the transmissivity is given by η1/(2n) instead of η1/n. This is because the distance they
need to travel is only to halfway between each repeater node, i.e. a distance of L/(2n). Inner qubits on the other hand,
are transmitted to nearby repeater stations using classical channels, so there is an additional delay characterized by
Pchip. The probability of a successful X and Z measurements are different, and are given by

PX = ξ0 (27)

PZ = (1− ϵstat + ϵstatξ1)
b0 (28)

where ξi is given by the recursive relationship

ξi = 1− [1− (1− ϵstat)(1− ϵstat + ϵstatξi+2)
bi+1 ]bi (29)
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for i ≤ ℓ and ξℓ+1 = bℓ+1 = 0. For a tree with a branching vector of b⃗ = [b0, b1], we can compute

ξ0 = 1− [1− (1− ϵstat)(1− ϵstat + ϵstatξ2)
b1 ]b0 (30)

= 1− [1− (1− ϵstat)
b1+1]b0 (31)

where we note that ξ2 = 0 and we can also compute

ξ1 = 1− [1− (1− ϵstat)(1− ϵstat + ϵstatξ3)
b2 ]b1 (32)

= 1− [1− (1− ϵstat)]
b1 (33)

= 1− ϵb1stat (34)

where we used the fact that b2 = 0. Using these, we can write explicit formulas for PX and PZ . Specifically,

PX = 1− [1− (1− ϵstat)
b1+1]b0 (35)

= 1− [1− (η1/nPfibP
k+2
chip ηGHZηc)

b1+1]b0 (36)

and

PZ = (1− ϵstat + ϵstat − ϵb1+1
stat )b0 (37)

= (1− ϵb1+1
stat )b0 (38)

=

(
1−

(
1− η1/nPfibP

k+2
chip ηGHZηc

)b1+1
)b0

. (39)

Each bell state measurement has a success probability of

PB =

[
1

2
(ηsηd)

2 +
1

4
(ηsηd)

4

]
·
(
P k+2
chip ηGHZηc

)2

· η1/n (40)

where the first factor evaluates to around 3
4 which is the upper limit of the success probability of a bell state

measurement, and the other parameters characterize the loss associated with transmitting two photons a distance of
L/(2n) through a lossy channel[4].

The probability of detecting a photon in one of the m channels is given by ϵtrav so the probability of at least one
successful detection at the end is given by

Pend = 1− (1− η1/(2n)P k+2
chip ηGHZηc). (41)

This gives us a formula for the rate per mode[4]. For a given m, k, b0, b1, the number of repeater stations n can be
optimized depending on the total distance of the repeater system. See figure 6. Notice that there is an envelope
function. That is, the optimal n changes depending on the length. For a given k we can optimize m, b0, b1, n using
grid search to obtain the maximum rate where condition 14 is imposed. The optimal parameters for both the naive
approach and the improved approach is summarized in table I and the experimental values of device parameters are
listed in reference [4].

Using these optimal parameters, we can plot the optimal key rate at various distances, for different k values. The
magenta line gives the best-known key rate where no repeaters are used, given by[4]

RPLOB = − log2(1− η) (42)

where η has the same dependence on L as in the repeater architecture. Note that in the improved scheme, a better
key rate can be achieved for k = 7, 8, 9, 10 for sufficiently long distances.

A. Naive Approach

In the naive approach, there are a few changes.

• Instead of having 2m parallel channels, the number of parallel channels change to

Nparallel = 2m(b0b1 + b0 + 1). (43)

That is, all the qubits part of the attached trees become outer qubits and form channels.
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FIG. 6: Key rate as a function of distance at various values of k for the naive and improved repeater schemes. The
magenta line shows the best known repeaterless architecture. Note that in both the naive and improved scheme, the
slopes are smaller than the magenta slope. This means that at sufficiently large distances, the repeater architecture
will beat the repeaterless one. However, the improved architecture is able to beat the repeaterless one much faster.

• Because the mentioned qubits become outer qubits, they are transmitted through quantum channels instead, so
all instances of ϵstat can be replaced with ϵtrav.

• Bell state measurements are done with less efficiency, and the success probability is given by

PB =
1

2
·
(
P k+2
chip ηGHZηc

)2

· η1/n (44)

instead.

k mnaive b⃗naive Rnaive mimproved b⃗improved Rimproved

7 5 [3, 2] 1.91× 10−8 4 [4, 2] 3.87× 10−6

8 8 [4, 2] 6.13× 10−6 5 [5, 3] 2.98× 10−3

9 11 [5, 3] 5.77× 10−4 7 [6, 4] 2.71× 10−2

10 13 [7, 4] 7.42× 10−4 8 [10, 5] 4.93× 10−2

TABLE I: A summary of the optimization results for both the naive and improved architecture at various values of
k. A distance of L = 300 km is used.

The optimal parameters in table I mostly agree with the ones found by Pant et al.[4], with a few minor differences.
In the naive scheme, for k = 10, the original authors found the optimal parameters to be mnaive = 12 while keeping

the same b⃗. The rate using m = 12 is R = 7.26 × 10−4, which is only a 2% difference. Perhaps the extra resources
needed for only a 2% improvement is not necessary, or the original authors did not consider this case.

For the improved scheme in the k = 9 case, the original authors found mimproved = 6 and b⃗improved = [7, 4]. This
gives a rate of 2.70×10−2, which is an even smaller percent difference of 0.4% from the one I computed. This difference
could be attributed to different ways of optimizing the number of repeater stations n, i.e. computing the envelope
function, as it is not exact. Furthermore, this small of an error will be practically not noticeable as uncertainties in
device parameters would likely lead to larger percent errors.

VI. CONCLUSION

In conclusion, this report has discussed the concept of quantum repeaters, specifically focusing on the all-photonics
quantum repeater. We have explored the motivation behind the development of quantum repeaters and the challenges
they aim to address. We have also described the basic mechanisms and construction of the all-photonics quantum
repeater, including the creation of cluster states and the use of fusion gates.
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Two different approaches to constructing the all-photonics quantum repeater have been presented: a naive approach
and an improved approach. The naive approach involves creating GHZ states and combining them to generate the
necessary cluster states, while the improved approach optimizes the use of intermediate cluster states to minimize
wastage. We have discussed the probability computations and optimization strategies for both approaches, as well as
compared their key rates at different distances. It was found that the improved approach generally outperforms the
naive approach, achieving higher key rates for a given distance.

It is important to note that this report has only scratched the surface of the topic of quantum repeaters. There are
many other aspects and variations of quantum repeaters that have not been explored here, but have been investigated
by the scientific community. Further research and development in this area are likely to lead to advancements in
quantum communication and cryptography, which have the potential to revolutionize information security and enable
secure communication over long distances. The study of quantum repeaters is vital in the quest for practical quantum
communication networks.
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