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1 Decoy State Protocol
1.1 Photon Number Splitting Attacks
Realistically, single photon pulses are very difficult to achieve and almost impossible to guarantee. If multiple photons are sent,
an evesdropper Eve could detect it and perform a photon number splitting (PNS) attack.

In a beam splitting attack, Eve employs a beam splitter to tap the optical channel. The core idea of the PNS attack lies in the
eavesdropper (usually named Eve) tapping into the quantum channel and intercepting the photon pulses. Eve then leverages a
photon-number-resolving (PNR) detector to measure the number of photons in the pulse rather than the quantum state[5]. If
the pulse is composed of one photon, Eve sends it forward without disturbing it. However, in the event that the pulse contains
multiple photons, Eve holds back one photon, allowing the rest to progress along the channel. Thus, while the key exchange
participants’ measure and generate their keys, Eve can also work on the withheld photon to decode the key, thereby undercutting
the security of the quantum cryptography protocol by breaching the understated assumptions[8].

The PNS attack’s strength lies in its stealthy nature, as it can be performed without noticeably influencing error rates, thus
remaining undetectable if following the conventional protocol. It is difficult for Alice and Bob to determine if any losses in
photons are due to an Evesdropper or due to channel loss.

1.2 Coherent States
Coherent state can be written in terms of the Fock basis [8],

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ (1.1)

where α is some complex number, and the probability of a pulse having n photons is given by,

Pµ(n) = e−µµn

n! . (1.2)
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1.3 Simulation Project 1 DECOY STATE PROTOCOL

If µ = 1, then the probability of emitting a single-photon source is only P1(1) = 1
e

∼ 37%. Thus, we typically will work with
weak coherent states, where the average number of photons per pulse µ is smaller than one. But there will always be a nonzero
probability more than one photon will be in each pulse, making it subject to PNS attacks.

An intuitive solution might be to reduce the pulse intensity as much as possible, ensuring that the probability of more than one
photon per pulse is negligibly small to make it almost impossible for Eve, an eavesdropper, to extract any useful information.

However, this approach comes with a significant pitfall. The key generation rate R is proportionate to the square of the channel
transmittance, i.e., R = O(η2). Now, η itself is a function of channel length and transmission loss parameter, and is given by

η ∼ e−kL, (1.3)

where L is the channel length and k is the loss parameter. This implies that as the length of the channel increases or the
transmission becomes less ideal, η decreases exponentially, which means the key generation rate drops off rapidly as well.

1.3 Simulation Project
The goal of the simulation project is to produce figure 2 in [4] and to numerically determine µoptimal, similar to how it was
derived mathematically via equation 12.

From the GLLP security analysis[8], the key rate satisfies

R ≥ −QµH(Eµ) + Q1(1 − H(e1)) (1.4)

where

• Qµ is the gain of signal states (probably of detection)

• Eµ is the overall QBER

• Qi is the gain of the i-photon state

• ei is the error rate of the i-photon state

• H(x) = −x log(x) − (1 − x) log(1 − x) is the binary entropy function.

Note that the gain Qµ and QBER Eµ are known quantities that can be experimentally determined. Therefore, only Y1, e1 need
to be bounded. For realistic situations, the transmission distance is large η ≪ 1 and working under this assumption we can
assume that Ei ≈ ei[4]. The gain of the i-photon state can be written as

Qi = YiPµ(i) = Yi
e−µµi

i! (1.5)

where Yi is the yield, defined as the probability of detecting exactly i photons. Therefore, the overall gain Qµ is a sum of the
individual gains

Qµ =
∞∑

i=0
Yi

µi

i! e−µ. (1.6)

The overall QBER is therefore the sum of each individual gain, scaled by their respective error rate,

Eµ =
∞∑

i=0
eiYi

µi

i! e−µ. (1.7)

Note that Qµ, Eµ can also experimentally be measured as[4]

Qµ = Y0 + 1 − e−ηµ (1.8)
Eµ = e0Y0 + edetector(1 − e−ηµ) (1.9)

where in the GYS experiment[2], they were able to measure

• Y0 ≈ 1.7 × 10−6 is the yield of the vacuum state.

• α = 0.21 dB/km

• e0 = 0.5 is the background error rate, and takes on this value based on the assumption the background is random.

• edetector = 3.3% is a constant (independent of distance), which is the probability a photon hits the erroneous detector.
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If two decoy states of intensities ν1, ν2 are used, they satisfy the exact same relationships, except with µ replaced with ν1 or
ν2. This means that the key rate increases as Y1 increases and decreases as e1 increases.

The fundamental idea of using decoy states is that Yi, ei do not change,

Yi(decoy) = Yi(signal) (1.10)
ei(decoy) = ei(signal). (1.11)

That is, a decoy state should be indistinguishable from a signal state. Since Yi, ei are parameters that a hypothetical evesdropper
Eve could control, we make the assumption that Eve has complete control over this. For a fixed µ, ν1, ν2, we assume she picks
{Yi, ei} to lower the rate as much as possible, so we need to lower bound Y1 and upper bound e1. Note that e1 is small and
for small values, H is a monotonically increasing function.

Our role then, is to pick the optimal combination of (µ, ν1, ν2) such that the worst-case scenario key-rate is as high as possible.
This can be achieved using linear programming. Specifically, an iterative process was done. First, my variables were Y1, . . . , YN

(where N = 10) and my objective function was −Yi (because of lower bound), subject to the constraints

Y0 + 1 − e−ηµ = Y0e−µ +
N∑

i=1
Yi

µi

i! e−µ

Y0 + 1 − e−ην1 = Y0e−ν1 +
N∑

i=1
Yi

νi
1

i! e−ν1

Y0 + 1 − e−ην2 = Y0e−ν2 +
N∑

i=1
Yi

νi
2

i! e−ν2

0 ≤ Yi ≤ 1.

Then the (optimized) versions of Yi were now fixed and {ei} became the variables with the objective function of e1. The
constraints become

e0Y0 + edetector(1 − e−ηµ) = e0Y0e−µ +
N∑

i=1
eiYi

µi

i! e−µ

e0Y0 + edetector(1 − e−ην1) = e0Y0e−ν1 +
N∑

i=1
eiYi

νi
1

i! e−ν1

e0Y0 + edetector(1 − e−ην2) = e0Y0e−ν2 +
N∑

i=1
eiYi

νi
2

i! e−ν2

0 ≤ ei ≤ 1.

Solving this linear program for ν1 = 0.05, ν2 = 0 and varying µ gives the following graph (where L = 10 km is set as an
example)
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which takes on an optimal value of 0.54, which is slightly off from the value of µopt = 0.48 computed in [4]. The efficiency as
a function of distance can be written as

η = ηBob10−αL/10 (1.12)
where ηBob = 0.045 is a fixed transmittance that describes losses that occur during detection, as measured in [2]. Therefore, if
we plot out the key rate as a function of distance, we get

Note that after a certain point (around 180km) a secure key cannot be communicated anymore. In [4], this maximum distance
was computed mathematically to be around 140km. The discrepancy could be caused by the iterative process not generating
the most ideal set of {Yi, ei} so the true minimum secure key rate could be lower than expected. Nonetheless, this preliminary
idea that I have tried still captures the key features, and future work may involve nonlinear optimization techniques.

When linear programming is applied to solve similar decoy state problems, such as in [7], the constraints were put as an
inequality, by putting a lower bound and upper bound on Qµ, Eµ when the infinite sum gets cut off. As N increases, the
constraints become tighter. However, I noticed that increasing N beyond 10 does not change the optimal µ, up to machine
precision. This is a result of 1

10! being a very big number. This makes sense because in practice, there will be no photon pulses
with more than 10 photons. Therefore, this simplified approach will not introduce any noticeable errors.

2 QKD Protocols
I have also looked at other QKD protocols as well as quantum repeaters, and have provided brief descriptions below.

2.1 EPR Pair BB-84
In the EPR Pair BB84 variant, entangled EPR pairs are measured by Alice and Bob in two potential bases. Any eavesdropping
would change the state of the system and be detectable by Alice and Bob[8].

2.2 MDI-QKD
Measurement-device independent QKD offers a solution for potential detector attacks. Alice and Bob each prepare and send
BB84 states to a third party, Charlie, who performs a Bell state measurement and broadcasts the result. This reveals only the
correlation of Alice and Bob’s qubits and no other information[8].

2.3 Twin Field QKD
Twin Field QKD uses single photon interference to enable measurement device independence and an improved key rate. This
is caused by the fact that only a single photon needs to arrive at the center for it to be successful [8].

2.4 GMCS QKD
Gaussian-modulated coherent-states QKD encodes information in the amplitudes of weak coherent pulses allowing integration
with existing telecom infrastructure. Alice and Bob compare their results publicly after enough measurements to extract a
shared secret key from the continuous data[3].
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3 Quantum Repeaters
Quantum repeaters use quantum teleportation to construct EPR pairs across several stations. There are key conditions for this
to work - having established entanglement, having quantum memory to store qubits until entanglement is generated across all
nodes, and being able to perform entanglement swapping operations[6].

There are a couple of noteworthy protocols for quantum repeaters:

3.1 DLCZ Protocol
The DLCZ protocol uses atomic ensembles as quantum memory sources but has the disadvantage of needing a long quan-
tum memory since establishing EPR pairs and performing successful Bell State Measurements (BSMs) might require several
attempts[6].

3.2 All Photonics Quantum Repeater
An All Photonics Quantum Repeater eliminates the need for quantum memory by using only photonics. Alice and Bob each
send half of an EPR pair to an adjacent receiving node, which performs a BSM. Working in parallel increases the chances of
success and eventually result in maximally entangled EPR pairs between Alice and Bob, and prevents the need for quantum
memory.[1].
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