
PHY407 Final Cheatsheet
Author: QiLin Xue

Integrals
Python rounds after 16 digits. The fractional error C for
number x is defined such that σ = C|x|, where σ is standard
deviation of error. Typically, C = O(10−16).
Trapezoidal rule:

I(a, b) ≈ h

[
1

2
f(a) +

1

2
f(b) +

N−1∑
k=1

f(a+ kh)

]

ϵ =
h2[f ′(a)− f ′(b)]

12
Simpson’s rule:

I(a, b) ≈ h

3

[
f(a) + f(b) + 4

∑
odd

f(a+ kh) + 2
∑
even

f(a+ kh)

]

ϵ =
h4[f ′′′(a)− f ′′′(b)]

180
Practical error estimate (get C by computing IN and I2N :

I(a, b) = IN (a, b) + Chn (1)

I(a, b) = I2N (a, b) + C(h/2)n (2)

Improve on Newton-Cotes using Gaussian quadrature,
where PN (x) are the Legendre polynomials:

xk ∈ {x : PN (x) = 0}, wk =

[
2

1− x2

(
dPn

dx

)−2
]
x=xk

I(a, b) =
b− a

2

n∑
i=1

wif

(
b− a

2
xi +

a+ b

2

)
Error improves by a factor of c/N2 when number of sample
points increases by 1. However requires function to be
reasonably smooth and hard to get an accurate estimate of
the error. N points exact for 2N − 1 order polynomial.

Derivatives
Forward difference 1st-order in h. Central difference
2nd-order in h. For forward difference, each term
f(x+ h), f(x) has error C|f(x)|. The total error and the
optimal h to choose is (can be derived using taylor series)

ϵ =
2C|f(x)|

h
+

1

2
h|f ′′(x)|, h =

√
4C

∣∣∣∣ ff ′′

∣∣∣∣
For central difference, second term is 1

24
h2|f ′′′(x)|.

Solving Linear systems
Can implement standard methods to solve Ax = b, but need
to be careful of machine precision (avoid dividing small
numbers!).
Partial pivoting: At mth row, check to see which of the
rows below has the largest mth value. Swap this row with
the current mth value and proceed.
LU Decomposition: Write A = LU. Then solve Ly = b
first, then Ux = y. Easy since triangular matrices. Gaussian
elimination yields U = LnLn−1 · · ·L0A = L−1A. Doesn’t
work if matrix is close to singular.
QR Decomposition looks for eigenvectors for Hermitian
matrices. Gram-Schmidt on columns of A to get Q. Write

A = QR and compute A1 = RQ = QTAQ = Q1R1,
A2 = R1Q1 = QT

1 QAQQ1 = Q2R2, Then Ak converges
to a near-diagonal matrix Ak = V TAV, where
V = QQ1 · · ·Qk. Diagonal entries of Ak are eigenvalues and
eigenvectors are columns of V.

Root Finding
Relaxation: Finds stable fixed points by iteratively solving

x = f(x). Error of x−x′

1−1/f ′(x)

Newton’s Method: Much faster than relaxation, but

doesn’t always converge: xn+1 = xn − f(xn)
f ′(xn)

. Error of

ϵ = O(ϵ2
N

0), ϵ = x− x′

Bisection: Always able to find a root if it exists, but it’s
slower, can’t find double roots, and only works for a single
bracketed root. Error of ∆/2N

Golden ratio search: Find the minimum by shrinking
intervals, Start with 2 points x1, x4 bracketing the interval.
Choose 2 points x2, x3 inside the interval. Check which of
f(x2) and f(x3) is lower to determine new brackets. If
f(x2) < f(x3), new interval is [x1, x3]. Use the golden ratio
to determine the most optimal placement of the internal
points, i.e. x4 − x1 = (x3 − x1)z = (x4 − x2)z

Fourier Transform
Fourier Transform

f̂(ν) =

∫ ∞

−∞
f(x)e2πiνxdx ≈

N−1∑
k=0

f(xk) exp (2πiνxk) (∆x)

DFT: If function is real, coefficients from N/2 → N are
complex conjugates of the first half. Runtime: O(N2). DFT
and IDFT:

ck =

N−1∑
n=0

yn exp

(
−i2πkn

N

)
, yn =

1

N

N−1∑
k=0

ck exp

(
i
2πkn

N

)
To recover frequencies, fi =

i
N

1
∆t
.

FFT: Divide and Conquer algorithm: O(N log(N)).

ODE
Euler: Error O(h2) each step, O(h) globally.

xk → [x], xk 7→ xk + f(x, t)

RK2: Derived by estimating the midpoint slope using
Euler’s method. Error O(h3) each step, O(h2) globally.

k1 = hf(x, t), k2 = hf

(
x+

k1
2
, t+

h

2

)
, x(t+ h) = x(t) + k2.

RK4: Error O(h4) globally.

k1 = hf(x, t), k2 = hf

(
x+

k1
2
, t+

h

2

)
k3 = hf

(
x+

k2
2
, t+

h

2

)
, k4 = hf(x+ k3, t+ h)

x(t+ h) = x(t) +
1

6
(k1 + 2k2 + 2k3 + k4)

Leapfrog Method: Use each point as a midpoint:

x(t+ h) = x(t) + hf

(
x+

h

2
f(x, t), t+

h

2

)
x

(
t+

3

2
h

)
= x(t+ h/2) + hf [x(t+ h), t+ h]

Also O(h2) error, but useful since time-reversible (RK2 is not
since mid-point is lost and can’t retrace steps), allows
conservation of energy. To get backwards, set
h 7→ −h, t 7→ t+ 3h/2.

Verlet: Extends leapfrog to two coupled ODEs. Consider
ẋ = v, v̇ = f(x). Then:

x(t+ h) = x(t) + hv

(
t+

h

2

)
v

(
t+

3h

2

)
= v

(
t+

h

2

)
+ hf(x(t+ h))

Also conserves energy. Often used in particle dynamics.

Estimating Error: Assume local error is ϵ = ch5. Error
after 2 time steps is ϵ1. Error after 1 time step of 2h is ϵ2.
Estimated error is ϵ = ϵ2−ϵ1

c
(x1 − x2), where x1, x2 are what

you get for the two cases. For RK4, this is

ϵ = ch5 =
1

30
(x1 − x2).

Adaptive Time Step: Target error is δ per unit time
(physical, not step). For RK4 (easily extended to other
methods), if

ρ =
hδ

ϵ
=

30hδ

|x1 − x2|
=

30δ

ch4
> 1

then h is too small. Update values with the step size = 2h
result, then set h′ = hρ1/4 to get ρ′ = 1. If ρ < 1, time step is
too large. Don’t record values but still set h′ = hρ1/4.

Leapfrog Error: Error is an odd function, ϵ(−h) = −ϵ(h),
so Taylor expansion gives ϵ(h) = c3h

3 + c5h
5 + · · · .

Cumulative error is even in h, Each improvement gives us two
orders of accuracy. We can do this via the following method.

Modified Midpoint (MMP) Method: To eliminate even
powers of ϵ during the first half step, integrate from t to
t+H with n+ 1 time steps:

x0 = x(t), x1/2 = x0 + hf(x0, t)/2

x1 = x0 + hf(x1/2, t+ h/2), x3/2 = x1/2 + hf(x1, t+ h) + · · · .
Then do both the whole integer and the forward Euler half
step:

xn = xn−1 + hf(xn−1/2, t+H − h/2) ≈ x(t+H)

x′n = xn−1/2 + hf(xn, t+ h) ≈ x(t+H).

Then

x(t+H)final =
xn + x′n

2
.

Bulirsch-Stoer: MMP rarely used by itself, but basis for
this powerful method: Take 1 single MMP step of size
h1 = H to get estimate of x(t+H) = R1,1 where R stands
for Richardson extrapolation. Now take 2MMP steps of size
h2 = H/2 to get second estimate x(t+H) = R2,1. Since
MMP is 2nd order and even total error, both these estimates
are

x(t+H) = R1,1 + c1h
2
1 +O(h4

1)

x(t+H) = R2,1 + c1h
2
2 +O(h4

2).

Using h1 = 2h2, we can equate to get

c1h
2
2 =

1

3
(R2,1 −R1,1) +O(h4

2).

Plugging this back into x(t+H) to get a new estimate R2,2 :

x(t+H) ≈ R2,1 +
1

3
(R2,1 −R1,1) +O(h4

2) ≡ R2,2 +O(h4
2).

In general: h = H, set n = 1 and use MMP to find x(t+H).
Continue to refine grid to find new estimates and error
estimates. When error is acceptable, stop. The iteration can
be expressed by:

x(t+H) = Rn,m+1 +O(h2m+2
n), where

Rn,m+1 = Rn,m +
Rn,m −Rn−1,m

[n/(n− 1)]2m − 1
, hn =

(
n− 1

n

)
hn−1.

Shooting Method: Suppose we want the root to be at a
particular point. We can use a root finding method by
adjusting some parameter (i.e. initial velocity), integrate it,
until root is found.
Eigenvalue Problems: To solve Schrodinger equation, do
not vary the slope with the shooting method, but rather the
eigenvalue (energy).

PDEs
Consider the PDE

f = αϕxx + βϕxy + γϕyy + δϕx + ϵϕy

and define ∆ = β2 − 4αγ. Note that ∆ = 0 is parabolic,
∆ < 0 is elliptic, and ∆ > 0 is hyperbolic.
Parabolic: Use relaxation methods. Expand out partial
derivatives, i.e.

∂2ϕ

∂x2
≈ ϕ(x+ a, y)− 2ϕ(x, y) + ϕ(x− a, y)

a2
,

and solve for ϕ(x, y) = g(x, y). Then set

ϕnew(x, y) = (1 + ω)g(x, y)− ωϕ(x, y).

where ω > 0 for overrelaxation (which is usually faster but
not always stable. ω = 0 is always stable). The Gauss-Seidel
method assumes that the value of each new computed cell is
more accurate, so we only need to use one array.
Parabolic: We can use Forward Time Centered Space
(FTCS) method: We can discretize space and time. for
∂T
∂t

= κ ∂2T
∂x2 , we get

Tn+1
m = Tn

m +
κh

a2
(Tn

m+1 − 2Tn
m + Tn

m−1),

where m = 0, . . . ,M , a = L/m,, and Tm(tn) ≡ Tn
m.

Von Neumann Stability Analysis: Substitute

Tn
m = T̂n

k e
ikam, and solve for the growth factor |T̂n+1

k /T̂n
k |.

This is stable if it is smaller than 1. For heat equation, the

condition is h ≤ a2

2κ
. For hyperbolic equations however, FTCS

is always unstable.

Hyperbolic (Explicit): Consider ∂2ϕ
∂t2

= c2 ∂2ϕ
∂x2 . We can

approximate the LHS and write two 1st order ODEs,

dϕm

dt
= ψm,

dψm

dt
=
c2

a2
(ϕm+1 − 2ϕm + ϕm−1).

Forward Euler on each (time step of h) gives, in matrix form:(
ϕn+1
m

ψn+1
m

)
=

(
1 h

− 2hc2

a2 1

)(
ϕn
m
ψm

n

)
+

(
0

c2h
a2 (ϕn

m+1 + ϕn
m−1)

)
.

Stability analysis on a 2d system is done using the same
substitution, and getting it in the form:(

ϕ̂n+1
k

ψ̂n+1
k

)
= A

(
ϕ̂n
k

ψ̂n
k

)
.

The eigenvalues of A are λ±. If |λ±|2 < 1, then it is stable.

Hyperbolic (Implicit): Make the substitution
h 7→ −h, n 7→ n+ 1 to get(

ϕn
m
ψn

m

)
=

(
1 −h

2hc2

a2 1

)(
ϕn+1
m

ψn+1
m

)
−

(
0

c2h
a2 (ϕn

m+1 + ϕn
m−1)

)
.

This is stable, but solutions will decay exponentially.
Crank-Nicolson: The average between both methods.
Taking the average, we have:

ϕn+1
m − h

2
ψn+1

m = ϕn
m +

h

2
ψn

m

ψn+1
m − h

2

c2

a2
(ϕn+1

m−1 + ϕn+1
m+1 − 2ϕn+1

m) =

ψn
m +

h

2

c2

a2
(ϕn

m−1 + ϕn
m+1 − 2ϕn

m)

The Von Neumann substitution gives |λ±| = 1, so solution
neither grows nor decays. It is 2nd-order accurate in time,
while implicit method is 1st-order accurate.
Spectral Methods: Suppose we are interested in finding f
such that

∇2f(x, y) = g(x, y).
We can write f, g in Fourier series:

f, g :=
∑

aj,ke
i(jx+ky,

∑
bj,ke

i(jx+ky),

substitute, in order to get∑
−aj,k(j2 + k2)ei(jx+ky) =

∑
bj,ke

i(jx+ky).

By the uniqueness theorem for Fourier expansions, we can
equate Fourier coefficients term by term, giving

aj,k = − bj,k
j2 + k2

.

With periodic boundary conditions, the Poisson equation
possesses a solution only if b0,0 = 0. Therefore, we can freely
choose a0,0 which will be equal to the mean of the resolution.
This corresponds to choosing the integration constant. To
turn this into an algorithm, only finitely many frequencies
are solved for. This introduces an error which can be shown
to be proportional to hn, where h := 1/n and n is the
hgighest frequency treated. In general: Compute the Fourier
transform (bj,k) of g. Compute the fFurier transform of aj,k
of f using the above formula (or equivalent). compute f by
taking an inverse Fourier transform of (aj,k).

A direct implication is that we can compute derivatives by

computing Fourier transforms. Let f =
∑
f̂n exp(iknx).

Then ∂f
∂x

=
∑
iknf̂n exp(iknx).

Random Numbers + Monte Carlo
Correlation: To test for randomness, we can compute

ϵ(N,n) =
1

N

N∑
i=1

xixi+n − E[x2],

where N is the number of data points, n is the correlation
distance. We want to avoid correlations between pairs of
numbers.
Moments: kth moment of µ(N, k) = E[xk].

Linear Congruential Generator: Consider
xi+1 = (axi + c) (mod m). Let x0 be the seed, and m is a
large integer which determines the period. For good results,

a− 1 is a multiple of p for every prime divisor p of m and c is
relatively prime to m.
Non-uniform distribution: Goal is to get a uniformly
distributed random number, then apply transformation to
make it seem like it came from a non-uniform distribution.
To find x(z) so that x has the distribution we want, solve for
x(z) such that

z =

∫ x(z)

0

p(x′)dx′,

where p(x) is the probability distribution we need.
Monte Carlo Integration: We want to use because: (1)
Good for weird/fast-varying functions, (2) much faster for
multi-dimensional integrals (standard way: each grid has side

length O(N1/d) so trapezoid integration has error

O(h2) ∝ 1/N2/d. But Monte Carlo has error ϵ ∝ 1/N1/2,
regardless of d), (3) Much easier to implement in complicated
domains.
Hit-or-miss MC: If the function fits inside a box, the
probability that a random point falls in the shaded area
(under a curve) is p = I/A. Randomly pick N locations in the
box. count the number of locations that are in the shaded
region (call the count k). The integral estimate is I ≈ kA

N
.

The expected error is σ =
√

(A−I)I
N

, which is very slow.

Mean Value MC: Estimate integral as I = (b− a)⟨f⟩. Use
random numbers for x to estimate ⟨f⟩. We have

I ≈ b−a
N

∑N
i=1 f(xi). Error estimate is σ = (b− a)

√
var f
N

,

where var f = ⟨f2⟩ − ⟨f⟩2. It also varies as N−1/2, but the
leading constant is smaller than the hit-or-miss method.
Importance Sampling MC: If integrand contains a
divergence, we want to place more points in region where the
integrand is large to better estimate the integral. We can
estimate,

I = ⟨ f(x)
w(x)

⟩w
∫ b

a

w(x)dx.

For example, if w(x) = x−1/2 (i.e. this is the term that
makes the integrand diverge), then

⟨ f(x)
w(x)

⟩w =
1

N

N∑
i=1

f(xi)

w(xi)
=

1

N

N∑
i=1

f(xi)

w(xi)
.

We need to sample points using p(x) = w(x)∫ b
a w(x)dx

. Error is

σ =
√

var(f/w)/N
∫ b

a
w(x)dx.

Markov: Choose a random starting state i, compute the
energy Ei. Choose a transition to a new allowed state j
uniformly. If Ej ≤ Ei, accept it. If Ej > Ei, accept it with
probability exp (−∆E/kT) . Repeat.
Simulated Annealing: Start with high temperature and
slowly lower it. Usually done with exponential decreasing.

	Integrals
	Derivatives
	Solving Linear systems
	Root Finding
	Fourier Transform
	ODE
	PDEs
	Random Numbers + Monte Carlo

