
Phy450: Relativistic Electrodynamics

QiLin Xue

Spring 2022

Contents

1



1 REVIEW OF E/M

1 Review of E/M
1.1 Maxwell’s Equations
Gauss’s Law states that ‹

S
dΦ =

˛
S

E · da = Q

ε0
=
˚

V

ρ

ε0
dV , (1.1)

where ε0 = 8.854× 10−12m−3kg−1A2s4 is the permittivity of the vacuum. It basically states that electric fields are created by
charges. There is an equivalent for magnetic fields,

‹
S

B · da = 0, (1.2)

i.e. there are no magnetic monopoles. Faraday’s Law states that changing magnetic fields induce electric fields. Mathematically,
‰

e

E · d` = − ∂

∂t

‹
S

B · da , (1.3)

where e is a unit vector pointing along the closed curve of interest. Ampere’s Law is related to Faraday’s Law in the opposite
direction, that is, current can be induced by electric fields. We have,

‰
e

B · d` = µ0

‹
S

J · da , (1.4)

where µ0 = 4π × 10−2mkgA−2s−2 is the permeability of vacuum. There are two important mathematical theorems. We have
Divergence theorem, ˚

V

∇ · F dV =
‹

F · da , (1.5)

and Stokes’s theorem, ‹
S

(∇× F ) · da =
‰

F · d` . (1.6)

We can then convert our integral forms of Maxwell’s equations to differential (or local) forms. We have,

∇ ·B = 0 (1.7)

∇×E = −∂B

∂t
Faraday (1.8)

∇×B = µ0J + µ0ε0
∂E

∂t
Ampere-Maxwell (1.9)

∇ ·E = ρ

ε0
Gauss’s Law (1.10)

The first two equations are homogeneous and the last two equations are inhomogeneous. The extra term for the last equation
is due to conservation of current density, i.e.

∂

∂t

˚
ρ dV = −

‹
J · da =⇒ ∇ · J = −∂ρ

∂t
. (1.11)

The Lorentz force is given by
F = qE + qv ×B. (1.12)

1.2 Magnetic and Scalar Potentials
How do we solve these suckers? We can use some simplifying tricks (other known as happy facts). We have happy fact #1,

∇ · (∇× F ) = 0. (1.13)

This suggests that we could potentially write
B = ∇×A , (1.14)

where A is known as the vector potential. This automatically solves the first equation. Substituting the magnetic potential
into Faraday’s Law gives

∇× (E + ∂

∂t
A) = 0. (1.15)
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1.2 Magnetic and Scalar Potentials 1 REVIEW OF E/M

Happy fact #2 tells us that
∇× (∇f) = 0, (1.16)

which suggests we can write

E = −∂A

∂t
−∇φ, (1.17)

where φ is the scalar potential.

But what about uniqueness? For a given magnetic and electric field, is A and φ necessarily unique? It turns out we can
transform

A→ A′ = A + ∇χ (1.18)

φ→ φ′ = φ− ∂χ

∂t
. (1.19)

These lead to the same E′ = E,B′ = B. Interestingly, these transformations can be shown to be equivalent to another gauge
transformation, that is the phase shift of a quantum mechanical wavefunction.

What happens when we substitute these potentials and gauge transformations into the homogeneous transformations? We
have,

∇× (∇×A)− µ0ε0
∂

∂t

(
−∂A

∂t
−∇φ

)
= µ0J (1.20)

=⇒∇(∇ ·A)−∇2A + µ0ε0
∂2

∂t2
A + µ0ε0∇ ∂

∂t
φ = µ0J (1.21)

=⇒
(
∇2A− µ0ε0ε0

∂2

∂t2
A

)
−∇(∇ ·A + ε0µ0

∂φ

∂t
) = −µ0J . (1.22)

The first term is the wave equation which is something we are familiar with, which suggests µ0ε0 = 1
c2
. The second term is

yucky, but we can set it to zero using gauge transformations. We have,

ξ := ∇ ·A + 1
c2
∂φ

∂t
(1.23)

=⇒ ξ′ = ∇ ·A′ + 1
c2
∂φ′

∂t
(1.24)

= ξ + �2χ, (1.25)

where �2 = ∇2 − 1
c2
∂2

∂t2
is known as the d’Alembert operator. We get a wave equation, and we can solve such that ξ′ = 0.

With this, we get the Lorentz Gauge condition,

∇ ·A + 1
c2
∂φ

∂t
= 0. (1.26)

which can be used to simplify and get
�2A = −µ0J . (1.27)

Similarly, Gauss’s Law becomes

∇ ·
(
−∂A

∂t
−∇φ

)
= ρ

ε0
(1.28)

=⇒ ∇2φ+ ∂

∂t
(∇ ·A) = −ρ/ε0. (1.29)

The second term can be simplified using the Lorentz Gauge condition to get

�2φ = − ρ

ε0
. (1.30)
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1.3 Poynting’s Theorem 1 REVIEW OF E/M

Summary:

�2
(
φ/c
A

)
= −µ0

(
cρ
J

)
Wave Equation (1.31)

1
c

∂

∂t
(φ/c) + ∇ ·A = 0 Lorentz Condition (1.32)

1
c

∂

∂t
(cρ) + ∇ · J = 0 Continuity (1.33)

Let us denote

ct = −x0, , x = x1, y = x2, z = x3 (1.34)
φ/c = −A0, Ax = A1, Ay = A2, Az = A3 (1.35)
cρ = −J0, Jx = J1, Jy = J2, Jz = J3. (1.36)

Using this notation, the three equations become( 3∑
i=1

∂2

∂x2
i

− ∂2

∂x2
0

)
Aν = −µ0Jν (1.37)

3∑
µ=0

∂Aµ
∂xµ

= 0 (1.38)

3∑
µ=0

∂Jµ
∂xµ

= 0. (1.39)

1.3 Poynting’s Theorem
The work done by a charge q displaced by d` is given by

dW = q(E + v ×B) · v dt = qv ·E dt (1.40)

We then get
dW

dt
=
ˆ
V

E · J · d3r, (1.41)

where
J =

∑
n

qnvnδ(r − rn). (1.42)

We can rewrite

E · J = 1
µ0

E · (∇×B)− ε0E · ∂E

∂t
(1.43)

= 1
µ0

(B · (∇×E)−∇ · (E ×B))− ε0E · ∂E

∂t
(1.44)

= − ∂

∂t

(
B2

2µ0
+ ε0E

2

2

)
− 1
µ0

∇ · (E ×B). (1.45)

Then,

dW

dt
= − ∂

∂t

ˆ
V

1
2

(
ε0E

2 + B2

µ0

)
d3r −

‹
S

(
E ×B

µ0

)
·A. (1.46)

The first term is the change in energy contained in a volume and the second term is the flux of energy coming out of a surface.
If no work is being done, these two must be equal to each other. Therefore,

u = 1
2(ε0E2 + 1

µ0
B2) (1.47)

is the total energy density stored in the field and
S = 1

µ0
(E ×B) (1.48)
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1.4 Monochromatic Plane Waves 1 REVIEW OF E/M

is the flux of energy per unit area and is Poynting’s Vector. If no work is being done, we have

∂u

∂t
= −∇ · S. (1.49)

Note that we do need to be cautious here since the transformation S′ = S + ∇×F , so we have to be careful here, especially
when using this differential form.

We can now look at solutions of the wave equation. For the equation(
∇2 − 1

c2
∂2

∂t2

)
u = 0, (1.50)

we have d’Alembert’s Solution,
u(r, t) = f(n · r ± ct), (1.51)

where n is the constant unit normal vector of the plane wave. One important case is when f has the form

f(x) = cos
(ωx
c

+ φ
)
, (1.52)

which is the monochromatic plane wave. Therefore, the solution is then

A cos
(ωn

c
r ± ωt+ φ

)
(1.53)

where we can write the wave vector as k = ωn

c
. The electric field plane wave can be written as

E(r, t) = E0 cos (k · r − ωt+ φ1) (1.54)
B(r, t) = B0 cos (k · r − ωt+ φ2) (1.55)

which is one possible solution to Maxwell’s equation. Note that since ∇ ·E = 0, this implies that

E0 · n = B0 · n = 0. (1.56)

We can write,

E = Re {E0 exp [i(k · r − ωt)]} (1.57)
B = Re {B0 exp [i(k · r − ωt)]} . (1.58)

Then ∇×E = −∂B

∂t
gives

B = 1
c

n× E0 . (1.59)

Using this, we can write

u = ε0E
2
0 cos2 (k · r − ωt+ φ) (1.60)

S = cun. (1.61)

Intuitively, note that u oscillates fast. We can average this over time,

〈u〉 = 2π
ω

ˆ t+2π/ω

t−2π/ω
u(t′) dt′ (1.62)

1.4 Monochromatic Plane Waves
NB: This is a “re-do” of last lecture.

We assert that the most general monochromatic plane wave is given by

E(r, t) = E1 cos
[ω
c

(n · r − ct)
]

+ E2 sin
[ω
c

(n · r − ct)
]
. (1.63)
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1.4 Monochromatic Plane Waves 1 REVIEW OF E/M

Note that there are no phase shifts explicitly written here. This can be written out in terms of a complex exponential,

E(r, t) = Re

(E1 − iE2)︸ ︷︷ ︸
E0

exp
(
i
ω

c
(n · r − ct)

) (1.64)

where E0 is the complex vector. Similarly for magnetic fields,

B(r, t) = Re

(B1 − iB2)︸ ︷︷ ︸
B0

exp
(
i
ω

c
(n · r − ct)

) (1.65)

Recall that Faraday’s Law is ∇×E + ∂B

∂t
= 0. Writing out the electric and magnetic fields in terms of complex exponentials,

we obtain:

Re
{
iω

c
(n× E0 − cB0) exp

[
iω

c
(n · r − ct)

]}
= 0. (1.66)

This is true for all of r, t so the magnitude must be zero. That is,

n× E = cB (1.67)

When E1 and E2 are parallel, we have linear polarization. If they are orthogonal, then it is circularly polarized. In the
general case, it is known as ellipticly polarized.

To save space, let us denote
Φ ≡ k · r − ωt. (1.68)

Then,

E2 =
(

E0e
iΦ + E∗

0
2

)2

(1.69)

= 1
4

(
E02ei2Φ + E∗0

2e−i2Φ + 2E0 · E∗
0

)
. (1.70)

Similarly,

B2 = 1
4

(
B0

2ei2Φ + B∗0
2e−i2Φ + 2B0 ·B∗

0

)
. (1.71)

Recall that energy density is

u = 1
2

{
ε0E

2 + 1
µ0
B2
}
. (1.72)

We can compute

B0 ·B∗
0 = n× E0

c
· n× E∗

0
c

(1.73)

= (n · e)E∗
0 · E0 − (n · E∗0)(n · E∗0)

c2
(1.74)

= E∗
0 · E0

c2
. (1.75)

Recalling that ε0 = 1
µ0c2

, we can show that the energy density contribution from the electric and magnetic field are going to
be equal. Therefore,

u = ε0
4

(
E2

0e
i2Φ + E∗0

2 + 2E0E∗
0

)
. (1.76)

The Poynting vector can then be written as

S = ncu, (1.77)

as before. Computing the average, we obtain
〈u〉 = ε0

2 E0 · E∗
0 (1.78)
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2 SPECIAL RELATIVITY

2 Special Relativity
2.1 Introduction
The Principle of Relativity: physical laws are the same in all inertial reference frames of reference. Here, reference frame
refers to a system of coordinates x, y, z, origin and axes, as well as time t. And inertial refers to Newton’s First Law being true.

Before Einstein, a change in coordinates was described by common sense, i.e. the Gallilean Transform, given by

x′ = x− vt (2.1)
y′ = y (2.2)
z′ = z (2.3)
t′ = t. (2.4)

If we choose the axes such that the velocity is in the x direction, then the y and z coordinates are unchanged. Note that the
acceleration is the same sinc

dx′

dt′
= dx

dt
− v =⇒ d2x′

dt′2
= d2x

dt2
(2.5)

Recall from Maxwell’s equation that the term c2 = 1
µ0ε0

comes into play, suggesting that the speed of light was finite. This
however does not depend on the frame, i.e. all observers observe the same speed of light. While there are some theories to try
to rationalize this (ether), but Einstein’s theory of special relativity is the simplest: time is not absolute, the speed of light is.

Consider two events:

• Event 1: A light bulb emits a flash at r1, t1.

• Event 2: You see the flash at r2, t2

We have,

∆r =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (2.6)
∆t = t2 − t1, (2.7)

so the sped of light is c = ∆r/∆t, and it gives the relationship

− c2∆t2 + ∆x2 + ∆y2 + ∆z2 = 0. (2.8)

Let us now move into a primed frame (i.e. moving at some velocity). Then special relativity states that we have

∆x′2 + ∆y′2 + ∆z′2 − c2∆t′2 = 0. (2.9)

The space-time interval between two events is given by

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2, (2.10)

and we claim a fundamental result,
∆s = ∆s′. (2.11)

If:

• ∆s2 = 0 : light-like interval

• ∆s2 > 0 : space-like interval

• ∆s2 < 0 : time-like interval

2.2 Other Stuff
Notes were not taken.
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2.3 Relativistic Action 2 SPECIAL RELATIVITY

2.3 Relativistic Action
Recall that the action is given by

S =
ˆ b

a

L(qi, q̇i, t) dt , (2.12)

and the principle of stationary action δS = 0 gives

d

dt

∂L

∂q̇i
− ∂L

∂xi
= 0, (2.13)

where the momentum is given by pi = ∂L

∂q̇i
and energy as E = q̇ip

i − L. What about the relativistic action? One guess is

S = α

ˆ b

a

dτ = α

ˆ b

a

1
γ(u) dt , (2.14)

so
L = α

√
1− u2 ' α

(
1− 1

2u
2 +O(u4)

)
(2.15)

This should correspond to mu2

2 for u� 1, so we need α = −m. Therefore,

S = −m
ˆ b

a

1
γ(u) dt . (2.16)

We can compute the momentum to be

pi = −mc2 d

dui

(
1− u2)1/2 (2.17)

= mγ(u)ui (2.18)
= mηi. (2.19)

Similarly, the energy is

E = u · p− L (2.20)
= mcηt. (2.21)

Recall that η is the 4-velocity. We can write our 4-vectors as:

∆xµ = {∆t,∆r} (2.22)
ηµ = {γ, γu} (2.23)
pµ = {E ,p} . (2.24)

2.4 Lorentz Transformation
Let Γ be the Lorentz transformation. We have,

∆xµ
′

= Λµν∆xν .

Similarly,

∆s2 = gµν∆xµ∆xν (2.25)

2.5 Wave-vector and Doppler Shift
Missed this class, but basic idea: The wavevector is a 4-veector

kµ =


ω/c
nxω/c
nyω/c
nzω/c

 , (2.26)
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2.5 Wave-vector and Doppler Shift 2 SPECIAL RELATIVITY

and applying the Lorentz transformation gives the Doppler shift and we get a “baby model” of Big Bang cosmology. Namely,
the longitudinal component transforms as:

ω′

c
=ω

c
(−γβ + γnx) (2.27)

=⇒ n′‖ =
n‖ − v/c

1− v · n/c
, (2.28)

and the longitudinal components transformations give

n′⊥ = n⊥
γ(1− v · n/c) , (2.29)

where recall

v · n = v · (n⊥ + n‖) (2.30)
= v · n‖. (2.31)

Suppose the angle between n and v is θ, such that

|n‖| = cos θ (2.32)
|n⊥| = sin θ. (2.33)

Then the transformations give

cos θ′ = cos θ − β
1− β cos θ (2.34)

sin θ′ = sin θ
γ(1− β cos θ) . (2.35)

This is a bit ugly, but note that

cos(θ − θ′) = cos θ cos θ′ + sin θ sin θ′ (2.36)

= cos θ(cos θ − β)
γ(1− β cos θ) + sin2 θ

1− β cos θ (2.37)

= cos2 θ − β cos θ +
√

1− β2 sin2 θ

1− β cos θ . (2.38)

Using sin2 θ + cos2 theta = 1, we can reduce this to

cos(θ − θ′) = 1 + sin2 θ

√
1− β2 − 1

1− β cos θ (2.39)

∼ 1− 1
2β

2 sin2 θ. (2.40)

But this is equal to cos(∆θ) = 1− (∆θ)2

2 , so we can conclude that

∆θ = −β sin θ. (2.41)

There’s actually a sign error in the derivation, but the final boxed answer is correct.

Historical Side Note: (aberration of starlight) Astronomers used to determine the distance to stars by looking at the parallax.
However, there is an apparent shift in the position of stars due to the Earth’s motion around the Sun.

A circular radiating light source that is moving towards an observer will display the headlamp effect, where the lights tend to
“bunch” up in the direction of motion. So if a star is moving towards Earth, it will get brighter.

Penrose-Terrel effect: Thanks to the differential timelag effects in signals reaching the observer from the object’s different
parts, a receding object would appear contracted, an approaching object would appear elongated (even under special relativity)
and the geometry of a passing object would appear skewed, as if rotated.
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3 FIELD THEORY

For images of passing objects, the apparent contraction of distances between points on the object’s transverse surface could
then be interpreted as being due to an apparent change in viewing angle, and the image of the object could be interpreted as
appearing instead to be rotated

Superluminal Motion: Can you travel faster than light? No, because then ds2 < 0. Thre is no reference frame where t2 > t1
(i.e. you arrive before you depart).

Quasar 3C273: Quasars (short for "quasi-stellar objects") are extremely luminous and distant celestial objects. For this specific
quasar, we measured a redshift of z = 0.158 which corresponds to R = 1.5× 1025 m. The quasar is consisted of two separate
objects and they found that as years progressed, these two objects were separating, and they could determine the rate at which
they were separating, 6.2 × 10−17 rad/sec. However, there is a problem! If we multiply ωR, we get a speed greater than the
speed of light....

This is caused by light arriving from one object arriving at some time after the light that was emitted from the other object.
Suppose a time t has passed when an object was ejected from the quasar (measured on Earth... I think). The light from the
quasar Q arriving at Earth O started at time t1 = t− R/c. The light from the ejected object E arriving at O started at time
t2 = t− EO/c. Working through the algebra, we get

t2 = t−R/c
1− β cosφ, (2.42)

where φ is the angle between QE and QO. We have

θ ' tan θ = v sinφt2
R− v cosφt2

. (2.43)

We can compute θ̇ to get
ω = v sinφ

R

1
1− v cosφ/c (2.44)

and
v/c = Rω/c

sinφ+ (Rω/c) cosφ = Rω/c√
1 + (Rω/c)2

sec(φ− φ0). (2.45)

And apparently special relativity is safe.

3 Field Theory
3.1 Action
Recall that the action for a free particle is

Sfree = −mc2
ˆ b

a

γ dt . (3.1)

We claim that the action due to interactions in a field is

Sem = q

ˆ b

a

Aµ dxµ . (3.2)

We develop this by observing that this action must be Lorentz invariant, where A is a 4-vector, specifically the 4-potential.
Therefore,

Stotal = Sfree + Sem = −mc2
ˆ b

a

γ dt+ q

ˆ b

a

Aµ dxµ . (3.3)

We can break up Aµ into its spatial and temporal components, so

Stotal =
ˆ b

a

−mc2
√

1− u2/c2 + qA · u− qφ︸ ︷︷ ︸
L

dt . (3.4)

Recall that Pi = ∂L

∂ẋi
, so we can compute

Pi = mγ(u)ui + qAi =⇒ P = p + qA. (3.5)
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3.1 Action 3 FIELD THEORY

The Hamiltonian is

H =
∑
i

ẋiPi − L (3.6)

= u · p + qu ·A−
(
−mc2

√
1− u2/c2 + qA · u− qφ

)
(3.7)

= mγu2 + mc2

γ
+ qφ (3.8)

= γmc2 + qφ. (3.9)

Or equivalently, (H − qφ) = γmc2. From the canonical momentum, we obtain

(P − qA)2 = γ2mu2. (3.10)

Combining everything, we obtain: (
H − qφ

c

)2
− (P − qA)2 = (mγc)2 − γ2mu2 = mc2. (3.11)

This allows us to write the Hamiltonian as (
H − qφ

c

)2
= m2c2 + (P − qA)2

. (3.12)

Note that if there are no field interactions, we obtain E2 = m2c4 + p2c2. At low velocities, we obtain

H = mc2 + 1
2m (P − qA)2 + qφ. (3.13)

We can also apply the Euler-Lagrange equation to the Lagrangian. We obtain

∂L

∂ẋi
= mγ(u)ui + qAi (3.14)

∂L

∂xi
= {q∇(A · u)− q∇φ}i (3.15)

(3.16)

Note that

∂aj
∂xi

= ∂ai
∂xj

+ ∂aj
∂xi
− ∂ai
∂xj

(3.17)

= ∂ai
∂xj

+ (δi`δjm − δimδj`)
∂am
∂x`

(3.18)

= ∂ai
∂xj

+ εijmεk`m
∂am
∂x`

. (3.19)

This gives us

∂aj
∂xi

bj = (b ·∇) a + bjεijkεklm
∂am
∂x`

(3.20)

= (b ·∇)a + b× (∇× a) . (3.21)

We can apply the Euler-Lagrange equation, to get:

d

dt
(p + qA) = q(u ·∇)A + qu× (∇×A)− q∇φ (3.22)

= q(u ·∇)A− q dA

dt︸ ︷︷ ︸
− ∂A
∂t

−q∇φ+ qu×B (3.23)

= q(E + u×B) (3.24)
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3.2 Relativistic Approach 3 FIELD THEORY

3.2 Relativistic Approach
We consider the action

S =
ˆ b

a

(E −mc2) dτ + qAµ dxµ . (3.25)

Consider a variation of the trajectory xµ(τ)→ xµ(τ) + δxµ(τ), where δxµ(a) = δxµ(b) = 0. We obtain,

δS =
ˆ b

a

−mc2 d(δτ) + qδAµ dxµ︸ ︷︷ ︸
q∂νAµ∂xν

dxµ + qAµ d(δxµ) . (3.26)

Note that −c2 dτ2 = dxν dxν , so

−2c2 dτ d(δτ) = δ(dxν dxν) (3.27)
= δ(dxν dxλ gνλ) (3.28)
= d(δxν) dxλ gνλ + dxν d(δxλ) gµλ (3.29)
= 2 d(δxν) dxν . (3.30)

Dividing by dτ (yuck!) we obtain,

d(δτ) = − 1
c2
ην dδxν , (3.31)

where ην is the 4-velocity. This allows us to write the action as

δS =
ˆ b

a

−mc2
(
− 1
c2

)
ην dδxν + q∂νAµδx

ν dxµ + qAµd(δxµ) (3.32)

=
ˆ b

a

mην d(δxν) + q∂νAµδx
ν dxµ + qAµd(δxµ) (3.33)

=
ˆ b

a

(mην + qAν) dδxν + q∂νAµδx
ν dxµ . (3.34)

We can compute, via integration by parts of the first term:
ˆ b

a

d {(mην + qAν)δxν} = [(mην + qAν)δxν ]ba = 0 (3.35)

=⇒
ˆ b

a

d {mην + qAν} δxν + {mην + qAν}d(δxν) = 0. (3.36)

Therefore, we can write our action as

δS =
ˆ b

a

{− d(mην + qAν) + q∂νAµ dxµ} δxν . (3.37)

Recall that the canonical momentum is Pν = pν + qAν . We can perform the change of variables:

dην = dην
dτ dτ (3.38)

dAµ = ∂µAν
dxµ

dτ dτ = (ην∂µAν) dτ (3.39)

dxµ = dxµ

dτ dτ = ηµ dτ . (3.40)

This gives

δS =
ˆ b

a

{
−mdην

dτ − qη
µ∂µAν + qηµ∂νAµ

}
δxν dτ . (3.41)

The principle requires that δS = 0 for the actual trajectory that xν takes. Setting this to zero gives

m
dηµ
dτ = qην (∂µAν − ∂νAµ) , (3.42)

where
Fµν = ∂µAν − ∂νAµ (3.43)

is the Faraday field tensor. Here are some properties:

12



3.3 Lorentz Transform of the Faraday Tensor 3 FIELD THEORY

• It is antisymmetric, so Fii = 0 and Fµν = −Fνµ.

• The time component can be computed as

F0i = ∂tAi − ∂iA0 (3.44)

= 1
c

∂Ai
∂t

+ 1
c
∇iφ (3.45)

= −Ei/c. (3.46)

See equation ?? for the last step. We also get Fi0 = Ei/c from anti-symmetry.

• We can also obtain:

F12 = Bz (3.47)
F13 = −By (3.48)
F23 = Bx (3.49)

by using the fact that B = ∇×A. Therefore, we get

Fνµ =


0 −Ez/c Ey/c −Ez/c

Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
Ez/c By −Bx 0

 . (3.50)

3.3 Lorentz Transform of the Faraday Tensor
Recall that

(F ′)µν = ΛµκΛνλFκλ = ΛµκF kλΛνλ (3.51)

=


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1




0 Ex Ey Ez
−Ex 0 Bz −By
−Ey −Bz 0 Bx
−Ez By −Bx 0



γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

 . (3.52)

If we compute this, we get Bx = B′x and Ex = E′x. However, the other components transform like

E′y = γ(Ey + vBz) = γ {E − v ×B}y (3.53)
E′z = γ(Ez − vBy) = γ {E − v ×B}z (3.54)
B′y = γ(By − vEz) = γ {B − v ×E}y (3.55)
B′z = γ(Bz + vEy) = γ {B − v ×E}z . (3.56)

We can rewrite these as

E‖ = E′‖ (3.57)
E⊥ = γ {E⊥ − v ×B⊥} (3.58)
B‖ = B′‖ (3.59)
B⊥ = γ {B⊥ − v ×E⊥} . (3.60)

3.4 Full Action
The full action can be written as

S = Sfield + Smatter + Sfield-matter (3.61)
where

Sf/m = 1
c

ˆ
d4xjµAµ (3.62)

is what we use to derive the Lorentz force law. We wish to construct the Lagrangian for the field

Sfield =
ˆ

d4xL (Aν , ∂µAν) (3.63)

where
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3.4 Full Action 3 FIELD THEORY

• L must be a Lorentz Scalar

• Gauge Independent

• No derivatives of Fµν
• Quadratic in Fµν .

Recall that

FµνF
µν = 2(B2 − E2/c2) (3.64)

F̃µνF
µν = −4(B ·E)/c (3.65)

= 4∂κ(εκλµνAλ∂µAν) (3.66)

However, the hypersurface surface integral is zero, so we guess the first quadratic term

Lfield = −ε0c4 FµνF
µν . (3.67)

Therefore,

L (Aν , ∂µAν) = 1
c
jkAk −

1
4ε0cFkλF

kλ (3.68)

and the E-L equations are

∂µ

[
∂L

∂(∂µϕ)

]
− ∂L

∂ϕ
= 0 (3.69)

Using ϕ→ Aν we can compute
∂L

∂Aν
= 1
c
jν (3.70)

and

∂L

∂(∂µAµ) = −ε0c2 F kλ
(

∂Fkλ
∂(∂µAν)

)
. (3.71)

It is not too hard to determine

∂Fkλ
∂(∂µAν) = ∂

∂µAν
{∂κAλ − ∂λAκ} (3.72)

= δµκδ
ν
λ − δµλδνκ. (3.73)

Therefore, this gives

∂L

∂(∂µAν) = −ε0c2 Fκλ {δµκδνλ − δµλδνκ} (3.74)

= −ε0c2 (Fµν − F νµ) (3.75)

= −ε0cFµν . (3.76)

Therefore, E-L gives
∂µF

νµ = µ0j
ν . (3.77)

How does this give us Maxwell’s equations? Let’s set ν = 0. This gives

∂

∂x
F 01 + ∂

∂y
F 02 + ∂

∂z
F 03 = µ0j

0 = µ0cρ. (3.78)

which gives
1
c

(∂xEx + ∂yEy +z Ez) = µ0cρ =⇒ ∇ ·E = µ0c
2ρ = ρ

ε0
. (3.79)

If we set ν = 1 we get
∂0(−Ex/c) + ∂yBz − ∂zBy = µ0Jx =⇒ (∇×B)x = µ0Jx + 1

c

∂Ex
∂t

(3.80)
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