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1 Electromagnetic Waves

1.1 Maxwell’s Equations

Maxwell's equations in differential form are given by
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1.2 Scalar and Vector Potentials
We can write
B=VxA
0A
E=-22_
ot

where ¢ is the scalar potential and A is the vector potential.
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1.3 Gauge Invariance

1 ELECTROMAGNETIC WAVES

1.3 Gauge Invariance

The choice of A and ¢ are not unique. The transformations

A A =A+Vy

b =g K.
These lead to the same E' = E, B’ = B. The Lorenz Gauge is given by
8, A" = 0.
and the Coulomb Gauge is given by
V-A=0.

1.4 The Wave Equation

If we use the Lorenz gauge, we can write the vector potential as a wave equation
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(1.4.1)

We can write down wave equations for B, E by computing V x (V x B) and V x (V x E) in a vacuum.

The electric field and magnetic field plane waves can be written in the form of

E =Re{&expli(k-r —wt)]}
B =Re{Byexp[i(k-r —wt)]},

w
~—

where &y, By are complex amplitudes and w = c|k| is the frequency. One fundamental idea is that solutions to Maxwell's
equations must obey the wave equation, the converse is not true. In fact, from V- E = V- B = 0 we have that electromagnetic

plane waves are perpendicular to the direction of propagation. We have,
k=0,
and the magnetic and electric fields are related via

B:EkxE.
C

(1.4.4)
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The electric and magnetic fields in a monochromatic plane wave with propagation vector k and polarization bmn are given by

E(r,t) = Egcos(k-r —wt+6)n

1 2
B(r,t) = EEO cos(k-r —wt+96)(k x 1)

1.5 Energy and Momentum in Electromagnetic Waves

The energy per unit volume in an electromagnetic field is given by

(1.4.6)

(1.4.7)



2 FIELD THEORY

1 1
= —¢oE? + ZpoB2.
U 260 +2M0

The Poynting vector gives the energy flux density (energy per unit area, per unit time) as

S:iExB.
Ho

For a monochromatic plane wave propagating in the n direction, we have

S = cun.
The average energy per unit volume is given by
1
(u) = iﬁoEg

2 Field Theory

2.1 Basic Action

The action for a particle in an electromagnetic field is given by

1 1
S = Stree + Sem = fmcz/;dtJrq/Au dz* + E/j”AHd4:17.

2.2 Deriving Lorentz Force Law

Neglecting the field interaction term, we can write the action as

b
S :/ —mc?\/1 —u2/c + qA-u — qodt.

Minimizing this action will give us the Lorentz Force Law. Specifically,

oL
— = myu; +qA;
Pi
L 9A; o

= —U; — .
There are two important properties:

8Clj _ 86Li 4 8aj aay‘,
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This gives us
Oa; O,
011 bj=({b-V)a+ bjEijkalmTw

=(b-V)a+(bx(V xa)),.
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2.3 Faraday Tensor Motivation

2 FIELD THEORY

This gives us (using the E-L equation)

dt

. d 0A d
Using the fact that %A = + (uV)A we can solve for F = 7P to get

F=¢q(E+uxB)

where

was used.

2.3 Faraday Tensor Motivation

The basic action can be written in the form

b
S = / (5 — mcz) dr + qA, da*

i(p-i—qA) =q(u-V)A+qu x (V x A)—qVao.

(2.2.1)

dt
since £ = ymc? and dr = —. Consider now a variation of the 4-trajectory 2 (1) — " (7)+0z"(T) where §z#(a) = 52" (b) = 0.

v
We can compute the variation in S and set it to zero. That is,

b
08 = / —mc?d(07) + q(dA,) dz* + qA, d(6z*)

b
1 L
= / —mc? (—02> n, d(d2”) + ¢0, A, 0" dat + qA,, d(dzH)

b
= / (mn, + qAy) d(6z") + q0, A, dx” dat .

Here, we used the fact that

and ]
A(67) = =5 (d(3a"))

which is derived by taking the variation of both sides of —c¢? d7? = dz” dz,, . Integration by parts on the first term gives us

b
55:/ {—d(mn, +qA,) + ¢0, A, dz"} 5z".

Recall that the canonical momentum is P, = p, 4+ qA,. We can perform the change of variables:

dn,
dn, = ar dr
da” y
d4, = 0,A, —dr = ("0, A,) dr

dr

o
dat = —ddz dr =ntdr.
T

This gives

b
08 = / {—mc?y —qn" 0, A, + qn“@l,A#} dx¥ dr.
a T

The principle requires that 0.5 = 0 for the actual trajectory that x¥ takes. Setting this to zero gives

dn v
md—: =4qn (aMAV - al/Au) )



2.4 Maxwell's Equations from Faraday Tensor 2 FIELD THEORY

where,

0 —E;/c —Ey/c —E./c
E./c 0 —B, B,

By = @Ay = B Ay, = E,Jc B, 0 _B, (2.3.1)
E./c —-B, B, 0
is the Faraday field tensor (electromagnetic tensor). Note that
dny,
B — gn’F,, 2.3.2
m dr qn Lty ( )

is known as the relativistic form of the Lorentz force.

2.4 Maxwell’'s Equations from Faraday Tensor
Because F),,, is antisymmetric, we have the Bianchi Identity,
ea’\“”E)AFW =0.

Setting o = 0 gives
EOijkaiij = Eijkai(éjkpo) = 281BZ =2V -B=0.
Setting oo = i gives
EijOkajFok + Eijkoaijo + €i0jkaonk =0 = €ijk8jEk + aoBi = 0,
which is Faraday's Law. To get Ampere-Maxwell and Gauss’s Law we need to construct the action for the electromagnetic
field and how it interacts with matter.

1 1
Sl = /d4z:£(Au,c’)#Al,), L(A,,0,A,) = Ej’“Ak = ZeocFmF“. (2.4.1)

Minimizing using the Euler-Lagrange equations gives us
0, FH* = ugjt. (2.4.2)
Setting v = 0 gives Gauss's Law and setting v = i gives Ampere’s Law.

2.5 Noether’s Theorem and Stress Energy Tensor
TBA. See pg 13-15 (of the actual book)

2.6 Field Transformations
The total charge and dipole moment of the charge content distribution is

Q= ‘/Vp(rlﬂt)digr = ZQm

m

d :/ v p(r’ t)d3r = qurm
v

m

and the potential is a sum of the static coulomb potential, static dipole moment potential, and the oscillating dipole term.

Q +n-d(t—r/c) n-d(t—r/c)
4dreqr 4dmregr? 4megre

d(rn,t) = + O [r)?

and the magnetic vector potential
A(rn,t) = %O d(t —r/c) + O /r)?
7r

2.7 Radiation


http://www.damtp.cam.ac.uk/user/tong/qft/one.pdf
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