PHY450: Relativistic Electrodynamics Review

QiLin Xue

Spring 2022

Contents

1		tromagnetic Waves		
	1.1	Maxwell's Equations		
	1.2	Scalar and Vector Potentials		
	1.3	Gauge Invariance		
	1.4	The Wave Equation		
	1.5	Energy and Momentum in Electromagnetic Waves		
2	Field	Field Theory		
	2.1	Basic Action		
		Deriving Lorentz Force Law		
		Faraday Tensor Motivation		
		Maxwell's Equations from Faraday Tensor		
		Noether's Theorem and Stress Energy Tensor		
		Field Transformations		
		Radiation		

1 Electromagnetic Waves

1.1 Maxwell's Equations

Maxwell's equations in differential form are given by

$$abla \cdot oldsymbol{B} = 0$$
 (1.1.1)
$$abla \times oldsymbol{E} = -\frac{\partial oldsymbol{B}}{\partial t}$$
 Faraday (1.1.2)
$$abla \times oldsymbol{B} = \mu_0 oldsymbol{J} + \mu_0 \epsilon_0 \frac{\partial oldsymbol{E}}{\partial t}$$
 Ampere-Maxwell (1.1.3)
$$abla \cdot oldsymbol{E} = \frac{\rho}{\epsilon_0}$$
 Gauss's Law (1.1.4)

1.2 Scalar and Vector Potentials

We can write

$$B = \nabla \times A \tag{1.2.1}$$

$$\boldsymbol{E} = -\frac{\partial \boldsymbol{A}}{\partial t} - \boldsymbol{\nabla}\phi \tag{1.2.2}$$

where ϕ is the scalar potential and ${\boldsymbol A}$ is the vector potential.

1.3 Gauge Invariance

The choice of ${\bf A}$ and ϕ are not unique. The transformations

$$A \to A' = A + \nabla \chi \tag{1.3.1}$$

$$\phi \to \phi' = \phi - \frac{\partial \chi}{\partial t}.\tag{1.3.2}$$

These lead to the same E'=E, B'=B. The Lorenz Gauge is given by

$$\partial_{\mu}A^{\mu} = 0. \tag{1.3.3}$$

and the Coulomb Gauge is given by

$$\nabla \cdot \mathbf{A} = 0. \tag{1.3.4}$$

1.4 The Wave Equation

If we use the Lorenz gauge, we can write the vector potential as a wave equation

$$\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J}. \tag{1.4.1}$$

We can write down wave equations for B, E by computing $\nabla \times (\nabla \times B)$ and $\nabla \times (\nabla \times E)$ in a vacuum.

The electric field and magnetic field plane waves can be written in the form of

$$E = \operatorname{Re} \left\{ \mathcal{E}_0 \exp \left[i(\mathbf{k} \cdot \mathbf{r} - \omega t) \right] \right\}$$
 (1.4.2)

$$\mathbf{B} = \operatorname{Re} \left\{ \mathcal{B}_0 \exp \left[i(\mathbf{k} \cdot \mathbf{r} - \omega t) \right] \right\},\tag{1.4.3}$$

where $\mathcal{E}_0, \mathcal{B}_0$ are complex amplitudes and $\omega = c|\mathbf{k}|$ is the frequency. One fundamental idea is that solutions to Maxwell's equations must obey the wave equation, the converse is not true. In fact, from $\nabla \cdot \mathbf{E} = \nabla \cdot \mathbf{B} = 0$ we have that electromagnetic plane waves are perpendicular to the direction of propagation. We have,

$$\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{k}} = 0, \tag{1.4.4}$$

and the magnetic and electric fields are related via

$$\boldsymbol{B} = \frac{1}{c}\boldsymbol{k} \times \boldsymbol{E}.\tag{1.4.5}$$

The electric and magnetic fields in a monochromatic plane wave with propagation vector k and polarization \hat{bmn} are given by

$$E(r,t) = E_0 \cos(k \cdot r - \omega t + \delta)\hat{n}$$
(1.4.6)

$$\boldsymbol{B}(\boldsymbol{r},t) = \frac{1}{c} E_0 \cos(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t + \delta) (\hat{\boldsymbol{k}} \times \hat{\boldsymbol{n}})$$
(1.4.7)

1.5 Energy and Momentum in Electromagnetic Waves

The energy per unit volume in an electromagnetic field is given by

$$u = \frac{1}{2}\epsilon_0 \mathbf{E}^2 + \frac{1}{2}\mu_0 \mathbf{B}^2. \tag{1.5.1}$$

The Poynting vector gives the energy flux density (energy per unit area, per unit time) as

$$S = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}. \tag{1.5.2}$$

For a monochromatic plane wave propagating in the \hat{n} direction, we have

$$S = cu\hat{\mathbf{n}}.\tag{1.5.3}$$

The average energy per unit volume is given by

$$\langle u \rangle = \frac{1}{2} \epsilon_0 E_0^2. \tag{1.5.4}$$

2 Field Theory

2.1 Basic Action

The action for a particle in an electromagnetic field is given by

$$S = S_{\text{free}} + S_{\text{em}} = -mc^2 \int \frac{1}{\gamma} dt + q \int A_{\mu} dx^{\mu} + \frac{1}{c} \int j^{\mu} A_{\mu} d^4 x.$$
 (2.1.1)

2.2 Deriving Lorentz Force Law

Neglecting the field interaction term, we can write the action as

$$S = \int_{a}^{b} -mc^{2}\sqrt{1 - u^{2}/c^{2}} + q\mathbf{A} \cdot \mathbf{u} - q\phi \,dt.$$

Minimizing this action will give us the Lorentz Force Law. Specifically,

$$\begin{split} \frac{\partial L}{\partial \dot{x}_i} &= \underbrace{m\gamma u_i}_{p_i} + qA_i \\ \frac{\partial L}{\partial x_i} &= q\frac{\partial A_j}{\partial x_i}u_j - q\frac{\partial \phi}{\partial x_i}. \end{split}$$

There are two important properties:

$$\begin{split} \frac{\partial a_j}{\partial x_i} &= \frac{\partial a_i}{\partial x_j} + \frac{\partial a_j}{\partial x_i} - \frac{\partial a_i}{\partial x_j} \\ &= \frac{\partial a_i}{\partial x_j} + \left(\delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell}\right) \frac{\partial a_m}{\partial x_\ell} \\ &= \frac{\partial a_i}{\partial x_j} + \epsilon_{ijm}\epsilon_{k\ell m} \frac{\partial a_m}{\partial x_\ell}. \end{split}$$

This gives us

$$\frac{\partial a_j}{\partial x_i} b_j = (\boldsymbol{b} \cdot \boldsymbol{\nabla}) \, \boldsymbol{a} + b_j \epsilon_{ijk} \epsilon_{klm} \frac{\partial a_m}{\partial x_\ell}$$
$$= (\boldsymbol{b} \cdot \boldsymbol{\nabla}) \boldsymbol{a} + (\boldsymbol{b} \times (\boldsymbol{\nabla} \times \boldsymbol{a}))_i.$$

This gives us (using the E-L equation)

$$\frac{d}{dt}(\boldsymbol{p} + q\boldsymbol{A}) = q(\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{A} + q\boldsymbol{u} \times (\boldsymbol{\nabla} \times \boldsymbol{A}) - q\boldsymbol{\nabla}\phi.$$

Using the fact that $\frac{d}{dt} A = \frac{\partial A}{\partial t} + (u \nabla) A$ we can solve for $F = \frac{d}{dt} p$ to get

$$F = q\left(E + u \times B\right) \tag{2.2.1}$$

where

$$\boldsymbol{E} = -\frac{\partial \boldsymbol{A}}{\partial t} - q \boldsymbol{\nabla} \phi$$

was used.

2.3 Faraday Tensor Motivation

The basic action can be written in the form

$$S = \int_{a}^{b} (\mathcal{E} - mc^{2}) d\tau + qA_{\mu} dx^{\mu}$$

since $\mathcal{E} = \gamma mc^2$ and $\mathrm{d}\tau = \frac{\mathrm{d}t}{\gamma}$. Consider now a variation of the 4-trajectory $x^\mu(\tau) \mapsto x^\mu(\tau) + \delta x^\mu(\tau)$ where $\delta x^\mu(a) = \delta x^\mu(b) = 0$. We can compute the variation in S and set it to zero. That is,

$$\delta S = \int_{a}^{b} -mc^{2} d(\delta \tau) + q(\delta A_{\mu}) dx^{\mu} + qA_{\mu} d(\delta x^{\mu})$$

$$= \int_{a}^{b} -mc^{2} \left(-\frac{1}{c^{2}}\right) \eta_{\nu} d(\delta x^{\nu}) + q\partial_{\nu} A_{\mu} \delta x^{\nu} dx^{\mu} + qA_{\mu} d(\delta x^{\mu})$$

$$= \int_{a}^{b} (m\eta_{\nu} + qA_{\nu}) d(\delta x^{\nu}) + q\partial_{\nu} A_{\mu} \delta x^{\nu} dx^{\mu}.$$

Here, we used the fact that

$$\delta A_{\mu} = \partial_{\nu} A_{\mu} \delta x^{\nu}$$

and

$$d(\delta \tau) = -\frac{1}{c^2} \eta_{\nu} (d(\delta x^{\nu}))$$

which is derived by taking the variation of both sides of $-c^2\,\mathrm{d}\tau^2=\mathrm{d}x^\nu\,\mathrm{d}x_\nu$. Integration by parts on the first term gives us

$$\delta S = \int_a^b \left\{ -\operatorname{d}(m\eta_{\nu} + qA_{\nu}) + q\partial_{\nu}A_{\mu}\operatorname{d}x^{\mu} \right\} \delta x^{\nu}.$$

Recall that the canonical momentum is $P_{\nu}=p_{\nu}+qA_{\nu}$. We can perform the change of variables:

$$d\eta_{\nu} = \frac{d\eta_{\nu}}{d\tau} d\tau$$

$$dA_{\mu} = \partial_{\mu} A_{\nu} \frac{dx^{\mu}}{d\tau} d\tau = (\eta^{\nu} \partial_{\mu} A_{\nu}) d\tau$$

$$dx^{\mu} = \frac{dx^{\mu}}{d\tau} d\tau = \eta^{\mu} d\tau.$$

This gives

$$\delta S = \int_a^b \left\{ -m \frac{d\eta_\nu}{d\tau} - q\eta^\mu \partial_\mu A_\nu + q\eta^\mu \partial_\nu A_\mu \right\} \delta x^\nu d\tau.$$

The principle requires that $\delta S=0$ for the actual trajectory that x^{ν} takes. Setting this to zero gives

$$m\frac{d\eta_{\mu}}{d\tau} = q\eta^{\nu} \left(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}\right),\,$$

where,

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \begin{pmatrix} 0 & -E_{x}/c & -E_{y}/c & -E_{z}/c \\ E_{x}/c & 0 & -B_{z} & B_{y} \\ E_{y}/c & B_{z} & 0 & -B_{x} \\ E_{z}/c & -B_{y} & B_{x} & 0 \end{pmatrix}$$
(2.3.1)

is the Faraday field tensor (electromagnetic tensor). Note that

$$m\frac{d\eta_{\mu}}{d\tau} = q\eta^{\nu} F_{\mu\nu} \tag{2.3.2}$$

is known as the relativistic form of the Lorentz force.

2.4 Maxwell's Equations from Faraday Tensor

Because $F_{\mu\nu}$ is antisymmetric, we have the Bianchi Identity,

$$\epsilon^{\alpha\lambda\mu\nu}\partial_{\lambda}F_{\mu\nu}=0.$$

Setting $\alpha = 0$ gives

$$\epsilon^{0ijk}\partial_i F_{jk} = \epsilon^{ijk}\partial_i (\epsilon_{jkp}B^p) = 2\partial_i B^i = 2\nabla \cdot \boldsymbol{B} = 0.$$

Setting $\alpha = i$ gives

$$\epsilon^{ij0k}\partial_j F_{0k} + \epsilon^{ijk0}\partial_j F_{k0} + \epsilon^{i0jk}\partial_0 F_{jk} = 0 \implies \epsilon^{ijk}\partial_j E_k + \partial_0 B^i = 0,$$

which is Faraday's Law. To get Ampere-Maxwell and Gauss's Law we need to construct the action for the electromagnetic field and how it interacts with matter.

$$S_{\text{full}} = \int d^4x \mathcal{L}(A_{\nu}, \partial_{\mu} A_{\nu}), \qquad \qquad \mathcal{L}(A_{\nu}, \partial_{\mu} A_{\nu}) = \frac{1}{c} j^k A_k - \frac{1}{4} \epsilon_0 c F_{\kappa \lambda} F^{\kappa \lambda}. \tag{2.4.1}$$

Minimizing using the Euler-Lagrange equations gives us

$$\partial_{\nu}F^{\mu\nu} = \mu_0 j^{\mu}. \tag{2.4.2}$$

Setting $\nu=0$ gives Gauss's Law and setting $\nu=i$ gives Ampere's Law.

2.5 Noether's Theorem and Stress Energy Tensor

TBA. See pg 13-15 (of the actual book)

2.6 Field Transformations

The total charge and dipole moment of the charge content distribution is

$$Q = \int_{V} \rho(\mathbf{r}', t) d^{3}r = \sum_{m} q_{m}$$
$$\mathbf{d} = \int_{V} \mathbf{r}' \rho(\mathbf{r}', t) d^{3}r' = \sum_{m} q_{m} \mathbf{r}_{m}$$

and the potential is a sum of the static coulomb potential, static dipole moment potential, and the oscillating dipole term.

$$\phi(r\boldsymbol{n},t) = \frac{Q}{4\pi\epsilon_0 r} + \frac{\boldsymbol{n} \cdot \boldsymbol{d}(t-r/c)}{4\pi\epsilon_0 r^2} + \frac{\boldsymbol{n} \cdot \dot{\boldsymbol{d}}(t-r/c)}{4\pi\epsilon_0 rc} + \mathcal{O}(r'/r)^2$$

and the magnetic vector potential

$$A(r\boldsymbol{n},t) = \frac{\mu_0}{4\pi} \dot{\boldsymbol{d}}(t - r/c) + \mathcal{O}(r'/r)^2$$

2.7 Radiation