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1 INTRODUCTION

1 Introduction
Given some ~̇x = ~v(x), where x is some generalized coordinate, then starting from x0 at t = 0, trajectories are locally linear,
given sufficiently smooth ~v(x) and sufficiently small t.
Fixed points are when that velocity field is zero. Fixed points can either be stable, unstable, or semi-stable, and can be
analyzed by either taking derivatives or looking at the phase portrait at that point. For example, consider ẋ = sin x, then
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Example of a Phase Portrait

ẋ = sin x

While x = π is a stable stationary point, it is not immediately clear that a particle will actually reach this point. To properly
analyze it, we need to integrate the equation.
Take f(x0) = 0, where x0 is a fixed point. Recall that

f(x) = f(x0) + (x− x0) + (x− x0)f ′(x0) + 1
2(x− x0)2f ′′(x0) + 1

3! (x− x0)3f ′′′(x0) · · ·

First assume that f ′(x0) 6= 0, so we only need to keep this first term. Our ODE takes the form of

d(x− x0)
dt

= f ′(x0)(x− x0),

where the solution is
x(t)− x0 = ef

′(x0)t(x(0)− x0).

We look at cases:
• Case 1: f ′(x0) > 0. If x(0) > x0, it flows away as t increases. If x(0) < x0, it also flows away as t increases. The
position grows initially as ef ′(x0)t, with ef ′(x0)t > 1∀t > 0.

• Case 2: f ′(x0) < 0. The converse is true
• Special case where f ′(x0) = 0 but f ′′(x0) 6= 0. This gives a semi-stable behavior governed by f ′′(x0).

Example 1: We look at an interesting example of ẋ = x1/3, such that the acceleration scales as v′(x) = x−2/3, which
diverges as x→ 0.

There are actually an infinite amount of solutions. Existence and uniqueness theorems will require that both f(x) and
f ′(x) exist in some small open interval around x0.

Theorem: Existence and Uniqueness of Solutions: Consider the 1D case of ẋ = v(x). E&U stipulates that ẋ = v(x) has
a unique solution around the initial condition (t0, x0) provided the functions are smooth in the sense of the Lipschitz
condition.

Definition: v(x) is smooth for x ∈ (a, b) if v(x) is continuous and differentiable in (a, b). The v̇(x) can be discontinuous.
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1 INTRODUCTION

Recall that continuity means that for all x, y ∈ (a, b), then there exists some K such that |v(x) − v(y)| < K|x − y|, so a
finite derivative exists almost everywhere. Differentiability means that for all x, y ∈ (a, b), then there exists some K such
that |v(x) − v(y)| < K|x − y|2, so a finite second derivative exists almost everywhere. The Lipschitz condition is that for all
x, y ∈ (a, b), then there exists some K such that |v(x)− v(y)| < K|x− y|p, so a finite p derivative exists almost everywhere.
Our systems, if they meet the Lipschitz condition, have a solution beginning at t0 for all x0 ∈ (a, b). All solutions of ẋ = v(x)
starting at x0, t0 are the same for some amount of time.
This solution can be found explicitly using Barron’s Formula, which states that for ẋ = v(x), then

t− t0 =
∫ ϕ(t)

−x0

dx

v(x),

where ϕ(t) = x(t) is the final position.
Some comments on E&U: Imagine at some x0, we have v(x0) = 0. We start at x0 at t0, and since x(t) = x0 is a solution, we
have x(t) = x0 is a solution and by E& U, this must be unique. But if v(x) = sin(x), and there is a path that takes us from
some x 6= x0 to the stable fixed point x0, then we would have found two separate solutions.
Therefore, we have a contradiction. We can conclude that if the function is Lipschitz continuous, then the path will not get to
x0 in finite time. And if we can get to x0 in finite time, then the function is not Lipschitz continuous.
More precisely, we take the form v(x) = α|x− x0|β . Then,

∆t =
∫ x0

x

dx
|x− x0|β

.

If β < 1, this integral converges, but the derivative of v(x) as we approach x0 is unbounded. Conversely, if β ≥ 1, this integral
diverges, but it is Lipschitz continuous.

Example 2: Classic Bucket Problem: Consider a bucket with water filled up to a height h. The rate of water flowing
out is related to the height, so as the height decreases the rate will also decrease. So the question asks, how do we
know when the bucket will be empty?

h

Let the cross-sectional area be A, and the exit hole have an area ε.
The speed of water flowing out is given by solving Bernoulli’s equation, giving Torricelli’s formula,

vout =
√

2gh,

so by continuity, the water height changes by a speed

εvout = Avwater =⇒ v = ε

A

√
2gh.

We will see that it empties in finite time since β ∼ 0.5, so it violates the Lipschitz condition. Namely,

dh√
h

= −2C dt

=⇒ h(t) =
(√

h0 − c(t− t0)
)2

=⇒ ∆t =
√
h0/c,

so we reach the fixed point h = 0 in finite time. But this also means the solution is not unique. We can reverse the
function in infinitely number of ways, using the frankenfunction

h(t) =
{

0 t < t0

(c(t− t0))2 t ≥ t0
,

where each t0 gives a different solution.
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Example 3: Logistic Equation: This describes the population of a species. We can write,

∆N
∆t = rN,

for the population N, but this is nonphysical as it is unbounded. To be physical, we can modify it to have a limit,

dN

dt
= rN

(
1− N

K

)
,

which introduces the notion of a carrying capacity K. If N > K, then the growth becomes negative and if N < k, the
growth is positive. There are two fixed points, N = 0 (unstable) and N = k (stable).

Example 4: Consider a similar equation that also describes something explosive,

dx

dt
= x2.

The solution is given by
x(t) = 1

1/x0 − t
.

Given x(0) = x0. the solution blows up (pole) when t =]frac1x0.

In general, 1D dynamics have fixed points and their nature can determine qualitative behavior of the system. However, some
equations have an adjustable parameter. There can be qualitative changes in the dynamics as this parameter is changed.

Warning: The carrying capacity K is not an example where changing this parameter affects the solution, since the
qualitative features still remain the same.

This study of qualitative (essentially discontinuous in the parameter) change is called bifurcation theory.

2 Bifurcation Theory
Consider the saddle node bifurcation

ẋ = r + x2.

There are three families of solutions, r > 0, r = 0, r < 0, corresponding to no fixed points, 1 fixed point, and 2 fixed points,
which give different qualitative behaviors. A bifurcation diagram is shown below,

x

r

where the red line shows the set of fixed points, which we can classify as stable or unstable.

Example 5: Another example is laser threshold operation. How does such a 4-level laser work? We can excite atoms
from the ground state to a pump band (with a band of energies). These immediately relax into the upper level of the
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2 BIFURCATION THEORY

actual laser, which relaxes into the lower level of the laser through the cavity as light, and relaxes back into the ground
state.
The upper and lower levels of the laser are curved mirrors and the area between is the cavity. The light inside the cavity
is a normal mode of an electromagnetic field. This is a simple harmonic oscillator, so we can quantize it. These levels
are described,

|n〉 = 1√
n!

(a†)n |0〉 ,

where |0〉 is the ground state with energy 1
2~ω0. The quantum mechanical amplitude n photons in a cavity will produce

another photon can be calculated,
〈n+ 1| |a† |n〉 =

√
n+ 1,

which shows some sort of positive feedback mechanism. Once the power goes above a certain point Pcr, the laser power
output becomes nonzero. This slope is called the slope efficiency.
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Laser Threshold Operation

Slope Efficiency

Let n be the number of photons, and let
ṅ = GnN − kn,

where N is the number of excited atoms, k represents losses in output photons, and G is the gain cross-section. Note
that the excited atoms can be pumped, i.e. via
• an electric discharge (HeNe,CO2,Ar ion lasers)
• optical pumping (flashlamp, Nd:glass, Nd:Yag)a

• chemical laser (makes new molecules but are left excited)
We can describe

N(t) = N0 − αn(t), (2.1)
where α describes the loss of excited atoms because they were used to amplify the laser and N0 is the number of atoms
that have been pumped at the start. Putting everything together,

ṅ = Gn(N0 − αn)− kn
= (GN0 − k)n− (Gα)n2

= nG

(
N0 −

K

G

)(
1− α

N0 −K/G
n

)
.

Compare this to the logistic equation, Ṅ = rN (1−N/K) . Therefore, the laser will depend on the sign of N0 −
K

G
.

Therefore, depending on how much we pump the laser, we can change the qualitative behavior. Consider the following
cases,
• Weak pumping, N0 < K/G. This implies that n = 0 is the only fixed point. The steady state dynamic is the case
where nothing happens, so it goes to n = 0.

• Strong pumping, N0 > K/G. We gain a new stable fixed point, and moved off the origin n = 0. The hold fixed
point now becomes unstable.
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2 BIFURCATION THEORY

The bifurcation diagram is,

x

r

aThe term after Nd is the host. For example, we can melt Yag and grow a crystal and grow it to contain Nd, which already has a lot of
thermal modes which can take away heat

There are different types of bifurcations,
• Saddle-node:
• Transcritical:
• Pitchfork: This is caused when a change in parameter can cause a fixed point to branch out into three directions. Some

examples,
– Phase transitions: As water vapour condenses to water, it gives up a lot of heat. This is the reason behind hurricanes.

As vapour condenses, the heat it gives up heats the surrounding air, creating strong convection currents, causing
more and more water droplets through a positive feedback loop.

– Magnetic spin systems, higgs phenomena, QCD
This bifurcation applies to system possessing Z2 symmetry. That is,

σ : x 7→ −x,

so σ2 ≡ 1. Now consider the equation
ẋ = rx− x3,

which is the normal form for a supercritical pitchfork bifurcation. The roots are,

x = 0,±
√
r,

where ±
√
r exists and are distinct only for r > 0. For r < 0, we have x = 0 as the only fixed point.
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Pitchfork Bifurcation
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2.1 Ising Model 3 TWO-DIMENSIONAL EQUATIONS

Consider
ẋ = rx+ x3 − x5,

which is a subcritical pitchfork bifurcation. These correspond to a 1st order phase transition and supercritical bifurca-
tions correspond to 2nd order phase transitions.
The reason that 2nd order phase transitions are smooth because when fixed points are created, they are created from the
origin. But for 1st order phase transitions, as we transition from stable to unstable, before the system becomes unstable,
new (stable) fixed points can be created and when the x = 0 solution becomes unstable, the stable solutions make a
sudden jump.

2.1 Ising Model
Suppose we have a Z2 system with 2 spins and our model is in d-dimensional space and each electron is on the vertex of a
lattice with values ±1. There is no fundamental difference between the up and down state, i.e. the energy.
Assume there is no external magnetic field, so we only have relationships between spins. Assume only nearest neighbours
interact. There are two possibilities,
• If ↑↑ is lowest energy, this is ferromagnetic
• If ↑↓ is lowest energy, it is antiferromagnetic.

We work with ferromagnetics for now. The Hamiltonian is

H = energy of spin-system = −|J |
∑
〈i,j〉

sisj + h
∑
i

si,

where the first term is Z2, but the 2nd term introduces a bias/preference/asymmetry and is no longer Z2.

We now introduce a macroscopic quantity

M ≡
N∑
i=1

si

is the total/net spin. Here, M is an example of an order parameter, with M = N meaning all up and M = −N meaning all
down. The Ising model looks at the symmetric case where h = 0 and d = 2, 3.

For curie temperatures greater than T > TC , we have 〈M〉 = 0, but if T < TC , we have 〈M〉 6= 0 and there is now a preffered
direction
In this phase where symmetry is spontaneously broken (T < Tc), it is unstable to have equal numbers ↑, ↓ .

3 Two-Dimensional Equations
For a 2d nonlinear equation, we can find fixed points and linearize there to analyze stability, i.e. a matrix with constant entries.
If the matrix for the system can be diagonalized, then we decouple x, y so the evolution of x′ only depends on x, and similarly
for y′. There are different cases,
• λ1, λ2 > 0 gives unstable nods
• λ1, λ2 < 0 gives stable nodes
• λ1 > 0, λ2 < 0 gives saddle nodes

But what if it’s not diagonalizable in R2? Suppose we have the rotation matrix for a 90◦ rotation, which gives us(
ẋ
ẏ

)
=
(

0 −1
1 0

)(
x
y

)
.

While this can’t be diagonalized, it represents a vector field that can be integrated in circles. In the phase space for (x, ẋ), we
have concentric circles, which is also true for simple harmonic oscillators. We can analyze in general,
• Case 1: Both roots are related

– Case 1a: (trA)2 ≥ 4 detA We have distinct eigenvalues, and get nodes with the sign (stable/unstable) or saddle
nodes with mixed signs.
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3 TWO-DIMENSIONAL EQUATIONS

– Case 1b: (trA)2 = 4 detA We have repeated eigenvalues, and get two equal valued eigenvalues

λ1 = λ2 = trA
2 .

∗ Case 1b(i): A is symmetric A = AT . Then we have a star shape.
∗ Case 1b(ii): A is not symmetric. We have only a single eigenvector,

v2 =
(

(a− b)/2d
1

)
.

This can be thought of as the limiting case of two nearly parallel eigenvectors.
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