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Problem One
3.4.5: We have ẋ = r − 3x2. Using the change of variables x→ X/3 and r → R/3, we get

1
3Ẋ = 1

3R−
1
3X

2

Ẋ = R−X2,

which is the normal form for a saddle-node bifurcation, so we have bifurcation at R = 0 =⇒ r = 0. The bifurcation diagram
is
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Bifurcation Diagram of 3.4.5

3.4.6 Let us find the fixed points. Setting ẋ = 0, we get

0 = rx− x

1 + x

=⇒ r = 1
1 + x

=⇒ x = 1
r
− 1,

where we factored out the second solution of x = 0. For every value of r 6= 1, we have two distinct fixed points, so a bifurcation
could only occur at rc = 1, where they cross, and are both x∗ = 0. For small variations in x around (rc, x∗), we have

ẋ = rx− x
(
1− x+O(x2)

)
= rx− x+ x2 −O(x3)
= (r − 1)x+ x2 −O(x3).

Making the substitution r → R+ 1 and x→ X, and ignoring higher order terms, we have

Ẋ = RX +X2,

which is the normal form for a transcritical bifurcation, which occurs at R = 0 =⇒ r = 1. Here, densely dotted lines represent
semi-stable fixed points and loosely dashed lines represent unstable fixed points. The bifurcation diagram is
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Bifurcation Diagram of 3.4.6

3.4.7: Let us find the fixed points. We have

0 = 5− re−x
2

=⇒ e−x
2

= 5
r

=⇒ − x2 = ln
(

5
r

)
,

which could have two solutions if 5
r
< 1, no solutions if 5

r
> 1, and one solution if r = 1, which corresponds to x∗ = 0. Thus,

rc = 1 is a bifurcation, and we can classify what type of bifurcation by considering small variations in x around (rc, x∗). We
have

ẋ = 5− r
(
1− x2 +O(x4)

)
= 5− r + rx2 −O(x4).

Making the substitution x→ X/r and r → r(5− r), ignoring higher order terms, we have

1
r
Ẋ = 5− r + X2

r

=⇒ Ẋ = r(5− r) +X2

=⇒ Ẋ = R+X2,

which is a saddle-node bifurcation. Note that the change of variables

(r, x)↔ (r(5− r), rx)

is not a regular scaling of variables, but at least locally, this is a diffeomorphism since the Jacobian is

|J | = det
(

5− 2r 0
x r

)
= |(5− 2r)r|

which at the bifurcation at r = 5, gives |J | = 25, which shows it is invertible. Therefore, in some small neighborhood of
(rc, x∗) = (1, 0), the change of variables is linear. The bifurcation diagram is
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Bifurcation Diagram of 3.4.7

3.4.8: Let us find the fixed points. We have

0 = rx− x

1 + x2

=⇒ r = 1
1 + x2

=⇒ x2 = 1
r
− 1,

where we factored out the solution x = 0.

• r ≤ 0 has 1 fixed point at x = 0

• 0 < r < 1 has three fixed points, one at x = 0 and two at ±
√

1/r − 1.

• r ≥ 1 has one fixed at x = 0.

Therefore, we have three bifurcations, one at r = 0 and one at r = 1. We start off at rc = 1 which has xc = 0. For small
variations in x, we have

ẋ = rx− x
(
1− x2 +O(x4)

)
= rx− x+ x2 +O(x5)
= (r − 1)x+ x2 +O(x5).

Using the change of variables r → R+ 1 and x→ X, and ignoring higher order terms, we have

Ẋ = RX +X2,

which is a sub-critical pitchfork bifurcation. The r = 0 bifurcation is tougher because as we approach r = 0 from the positive
side, the critical points diverge to ±∞, so there is no single-fixed point we can analyze around, yet r = 0 is clearly a bifurcation
since the behavior clearly changes at r = 0 (from one fixed point to three fixed points). To analyze this type of special
bifurcation, we have not yet learned the necessary tools to do so.

The bifurcation diagram is
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3.4.9 We can try to solve for the fixed points like before, but we will get a transcendental equation. Instead, we can analyze
this system graphically, since solving

0 = x+ tanh(rx)

is the same as finding the intersection between x and − tanh(rx). to show that there are two different types of behaviours:
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The transition between one fixed point and two fixed point occurs when their slopes are the same at x = 0, i.e.

d

dx

∣∣∣∣
x=0

x = − d

dx

∣∣∣∣
x=0

tanh(rx)

=⇒ 1 = −r sech2(0)
=⇒ r = −1.

At the rc = −1 bifurcation, there is one fixed point, x∗ = 0. Considering variations in x around x∗, we have

ẋ = x+ rx− r3x3

3 +O(x5)
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Making the substitution x→
√

3X/r2 and r → R− 1, we have
√

3Ẋ
r1.5 =

√
3X
r1.5 +

√
3X√
r
− r33

√
3X3

3r4.5

=⇒ Ẋ = X + rX −X3

=⇒ Ẋ = (1 + r)X −X3

=⇒ Ẋ = RX −X3,

which is a super-critical pitchfork bifurcation.
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Bifurcation Diagram of 3.4.9

3.4.10: We can solve for the fixed points. Similar to before, x = 0 is always a fixed point, so we will now find the fixed points
for 0 = r + x2/(1 + x2), which gives

0 = r + x2

1 + x2

=⇒ r = − x2

1 + x2

=⇒ r + rx2 + x2 = 0
=⇒ x2(r + 1) + r = 0

=⇒ x2 = − r

r + 1 .

Note that x is only well-defined for −1 < x ≤ 0. We have the following cases:

• r ≤ −1: one solution at x = 0

• −1 < r < 0 : one solution at x = 0 and two solutions at x = ±
√
−r/(r + 1).

• r ≥ 0 : one solution at x = 0.

There are two bifurcations, one at r = −1 and one at r = 0. At r = 0, the fixed points approach x∗ = 0 from both sides.
Considering variations in x around x∗, we get

ẋ = rx+ x3 (1−O(x2)
)

= rx+ x3 −O(x5).

Ignoring the higher order terms, this gives us
ẋ = rx+ x3,

which we can recognize as the sub-critical pitchfork bifurcation. The other bifurcation at r = −1 is similar to 3.4.8, in the
sense that when approaching rc = −1 from the positive side, the fixed points diverge to ±∞, and then it doesn’t make sense
to talk about the normal form at some (rc, x∗). The bifurcation diagram is
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Bifurcation Diagram of 3.4.10

Problem Five
(i) We first start by finding a general formula for the power of the matrix.

Lemma 1: We have the following relationship(
λ 0
c λ

)n
=
(

λn 0
nλn−1c λn.

)
for n ≥ 0.

Proof. We prove via induction. For the base case n = 0, we have(
λ0 0

0λ0−1c λ0

)
= I =

(
λ 0
c λ

)0
.

Now suppose this is true for n = k. We will show that this is true for n = k + 1. We have

Ak+1 = AkA

=
(

λk 0
kλk−1c λk

)(
λ 0
c λ

)
=
(

λk+1 0
kλkc+ λkc λk+1

)
=
(

λk+1 0
(k + 1)λkc λk+1

)
,

and we are done.

We can compute eAt by computing the power series for each element. For the diagonal elements,
∞∑
n=0

tnλn

n! = eλt,
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since this is the standard expansion for the exponential. Next, we have a term that is more interesting,
∞∑
n=0

tnnλn−1c

n! = 0 +
∞∑
n=1

tnnλn−1c

n!

= ct

∞∑
n=1

tn−1λn−1

(n− 1)!

= ct

∞∑
n=0

tnλn

(n)!

= cteλt.

Therefore,

eAt =
(
eλt 0
cteλt eλt

)
= eλt

(
1 0
ct 1

)
.

(ii) The solution for the flow is (
x(t)
y(t)

)
= eλt

(
1 0
ct 1

)(
x(0)
y(0)

)
= eλt

(
x(0)

x(0)ct+ y(0).

)
Let us look at some specific cases. In all these cases, we have a repeated eigenvalue of λ, which is real, so we’ll have
degenerate nodes.

• λ = 2; c = 3 : Since λ > 0, we have an unstable fixed point.

• λ = 2; c = −3 : Since λ > 0, we have an unstable fixed point.
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• λ = −2, c = 2 : Since λ < 0, we have an attracting stable fixed point.
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Problem Six
5.2.4 We have

ẋ = 5x+ 10y
ẏ = −x− y

or (
ẋ
ẏ

)
=
(

5 10
−1 −1

)(
x
y

)
.

The eigenvalues are given by
(5− λ)(−1− λ) + 10 = 0 ⇐⇒ λ2 − 4λ+ 5 = 0,

which has solutions in the form of
λ = 4±

√
−4

2 = 2± i.

Since these are complex eigenvalues with a nonzero real component, the fixed point will be an unstable spiral. The stability

and direction of flow was determined by determining the vector
(
ẋ
ẏ

)
at a few places.

5.2.5 We have

ẋ = 3x− 4y
ẏ = x− y,

or (
ẋ
ẏ

)
=
(

3 −4
1 −1

)(
x
y

)
.
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This has eigenvalues given by
(3− λ)(−1− λ) + 4 = 0 ⇐⇒ (λ− 1)2 = 0,

which has a repeating eigenvalue of λ = 1. Let us determine the eigenspace. We have(
2 −4
1 −2

)(
x
y

)
= 0.

The rank is 1, so the eigenspace is given by the span of a single vector,
{
t

(
2
1

) ∣∣∣∣t ∈ R
}
, so the fixed point is an unstable

degenerate node. In the below diagram, the straight line corresponds to the eigenvector ~v. Again, the stability and direction

of flow was determined by determining the vector
(
ẋ
ẏ

)
at a few important places (i.e. on the eigenvector and on the x-axis).

5.2.7 We have

ẋ = 5x+ 2y
ẏ = −17x− 5y

and the matrix form is (
ẋ
ẏ

)
=
(

5 2
−17 −5

)(
x
y

)
,

which has eigenvalues given by
(5− λ)(−5− λ) + 34 = 0 ⇐⇒ λ2 + 9 = 0,

which has eigenvalues λ = ±3i. Since they are complex eigenvalues with no real component, the fixed point is a neutrally

stable center. The direction of flow was determined by determining the vector
(
ẋ
ẏ

)
at a few places (i.e. on the x-axis and on

the y-axis).
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5.2.10 We have

ẋ = y

ẏ = −x+ 2y,

and the matrix form is (
ẋ
ẏ

)
=
(

0 1
−1 2

)(
x
y

)
.

The eigenvalues are given by

(0− λ)(2− λ) + 1 = 0 ⇐⇒ λ2 − 2λ+ 2 = 0 ⇐⇒ (λ− 1)2 = 0.

This gives the repeated eigenvalue of λ = 1. Let us determine the eigenspace. We have(
−1 1
−1 1

)(
x
y

)
= 0.

This matrix has rank 1 and so the eigenspace is given by the span of a single vector,
{
t

(
1
1

) ∣∣∣∣t ∈ R
}
, so the fixed point is a

stable degenerate node. The straight line corresponds to the eigenvector ~v. The direction and stability of flow was determined

by determining the vector
(
ẋ
ẏ

)
at a few places (i.e. on the eigenvector and on the x-axis).

11



12


